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We are very grateful to all commenters for their stimulat-
ing remarks, questions, as well as useful pointers to the lit-
erature which span a wide range of statistical methods over
decades of research. We have neither the space nor the knowl-
edge to answer many of the questions raised, and we only
aim to offer some clarifications. We hope that readers will be
as enthusiastic as ourselves about research on the topics dis-
cussed by the commenters. In the following, we refer to Dia-
conis and Wang as DW, Hoffman, Hannig and Zhang as HHZ,
Lawrence and Vander Wiel as LV, Ruggeri as R, Shafer as S, and
Williams as W.

1. Our Motivation
The Dempster-Shafer (DS) theory of belief functions was con-
ceived in the 1960s in part as a response to the alluring, yet trou-
bled, Fisherian proposal of fiducial inference (Dempster 1964,
1966). The DS theory stands as a logical framework for uncer-
tain reasoning, employing belief functions and random sets as
the basic elements of the extended calculus of probability. The
theory allows for not only partial specifications of probabilistic
knowledge, but also extension and combination operations that
venture outside the classic likelihood-based paradigms. While
an extensive literature review was not in the scope of the present
article, interested readers may refer to the suggestions provided
by the commenters, as well as Dempster (2008, 2014) and Cuz-
zolin (2017) for recent accounts on the subject.

As DW and S recalled, about a decade after its inception,
the computational hurdle imposed by the DS theory became
evident. Uniquely pertaining to statistical applications is the
challenge that typical inference problems, whether parametric
and nonparametric, have continuous state spaces. To suit these
problems, marginal DS models constructed via multivalued
mapping, Equation (3) of this article being an example, call
for nondenumerable collections of mass-bearing random sets.
While DS found successful implementations of the elegant local
computation and propagation schemes (see, e.g., Kong 1986;
Shenoy and Shafer 1986) in abundant discrete space problems
of artificial intelligence, these tools were not directly transferable
to DS models for statistical inference. The lack of computational
feasibility became a main reason why the DS theory remained an
esoteric interest in this community till this day.
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W wrote that the field of statistics lacks a unifying foundation
for parametric inference. We find it perfectly acceptable that the
field would not have such a unifying foundation when contem-
plating the breadth of the task and the diversity of situations in
which it arises. In any case, the need to go beyond the standard
Bayesian framework is widely shared and echoed by scholars
who explore alternative inferential paradigms, from structural
and functional inference, to generalized fiducial inference, con-
fidence distributions and inferential models, and to other forms
of inference using imprecise probabilities. The setting of system
reliability described by LV provides another excellent motiva-
tion for nonstandard approaches.

As R pointed out, the DS theory is often compared to robust
Bayesian approaches, as both were motivated by a quest for a
flexible alternative to classic Bayes that is capable of expressing
partial, or weakened, knowledge about unknown states of the
world. Both DS and robust Bayes use upper and lower prob-
abilities as the semantics to convey uncertain inference. The
added theoretical dexterity offers freedom to express a structural
type of uncertainty, in addition to the familiar stochastic type.
As connections between these approaches are sought (see, e.g.,
Wasserman 1990), we come to understand the similarities as
well as the differences. The recent work of Gong and Meng
(2021) discussed how the DS theory and robust Bayes appeal
to their preferred updating rules to incorporate observed infor-
mation. Worth noting is that robust Bayes, due to its objective
to preserves coherence at all costs, cannot learn from the data
if a fully vacuous prior is employed, and suffers from dilation
(Seidenfeld and Wasserman 1993) more so than DS. On the
other hand, the DS probability interval does not convey the
interpretation as a bound for an unknown “true” probability,
but rather a logical consequence resulting from the operational
combination of personalist marginal evidence. Just like other
paradigms, DS theory and robust Bayes each employ assump-
tions and imply consequences of their own; both should appeal
to self-described Bayesians!

The motivation for the present article is to offer computa-
tional feasibility to a classic DS model for categorical distribu-
tions. The hope is that our endeavors will motivate theoreticians
to pry into its inner workings, and that our efforts provide a
step toward a distinct tool for practitioners, to tackle settings
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such as that described by LV and other situations where the
quantification of multiple sources of uncertainty is paramount.

2. Relevance of This Approach

As clarified by S, the proposed algorithm implements the DS
approach for a specific “structure of the second kind” for Cat-
egorical distributions called “simplicial.” Both LV and HHZ
recalled favorable properties satisfied by another DS method
termed “Dirichlet DSM,” proposed in Lawrence et al. (2009).
Meanwhile, S recalled a property satisfied by the simplicial
model only. The experiments in HHZ show that the amount
of “don’t know” obtained with the simplicial method in the
setting of testing uniformity can be much larger than with
“Dirichlet DSM.” On the other hand, Figure 10(b) of this article
suggests that the simplicial model leads to smaller amounts of
ignorance regarding parameter inference in the linkage model.
S recalled that alternative approaches within the DS framework,
have been compared and discussed in the 1960s, for example,
in the discussion of Dempster (1968). We might either look
for another approach, that would resolve all disturbing aspects
of current ones, or be content with the variety of imperfect
but available approaches. We certainly agree with HHZ on the
numerous appeals of the Dirichlet DSM approach of Lawrence
et al. (2009).

As pointed out by W, some aspects of the proposed com-
putational method are very specific to the target distribution
under consideration. Indeed, we can only speculate that some
of the underlying ideas will inspire algorithms that will tackle
significantly different situations. For example, our method
instantiates large numbers of auxiliary variables in order to
make calculations more tractable on an extended state space; it is
directly inspired by the pseudo-marginal method (Andrieu and
Roberts 2009) and particle MCMC method (Andrieu, Doucet,
and Holenstein 2010), which themselves arose from ingenious
work in genealogical inference (Beaumont 2003). We do not
claim that the present work will be remotely as influential,
but we believe in the value of addressing specific problems
in original ways, in parallel to the delineation of general
principles.

3. Scalability of the Proposed Algorithm

Some comments concern the computational efficiency of the
proposed method. In the experiments of the article, we consider
counts summing up to a few thousands, and numbers of cate-
gories up to 16. In particular, R questioned the choice of number
of MCMC iterations, and HHZ reported long overall run times
for moderate numbers of categories, such as 36.

First, it is only necessary to perform the MCMC operations
using the nonzero counts. In Section 4.1 we describe how
categories with zero counts can be added back, in a postpro-
cessing step. Specifically, we can add M empty categories to a
K-dimensional draw u from νx by sampling a Gamma(K, 1)

multiplier for the existing K components, M additional
Exponential(1) variables and normalizing the resulting K + M
components; this costs of the order of M + K operations, and
computing the associated “η” variables costs K × (M + K)

operations, since ηk→j = +∞ for each empty category k and
j �= k.

Second, we describe in Section 3.4 and Appendix D how the
coupling method of Biswas, Jacob, and Vanetti (2019) can be
used to obtain practical guidance on the number of MCMC
iterations. This often provides support for surprisingly short
runs, as shown in Figure 5. Furthermore, the comment of DW
suggests that our simple convergence analysis in the case K = 2
is accurate. The intriguing connection to the “donkey walk,”
pointed out by DW and new to us, provides a promising path
to an analytical study in the general case K ≥ 3.

Third, we understand that the long run times reported by
HHZ originate from the effort required to enumerate the ver-
tices of the generated polytopes. Thankfully, in many situations
vertex enumeration is not a necessary step. The “half-space”
representation is enough for the implementation of procedures
that scale more favorably with the number of categories. Indeed,
recall that the polytope F(u) can be represented as {θ ∈ R

K :
Aθ ≤ b}, where the inequalities hold component-wise. The
inequalities include K + 2 constraints to enforce θ ∈ �, and
K(K − 1) constraints of the form θ� − ηk→�θk ≤ 0 for k, � ∈
[K]. Thus, the matrix (ηk→�)k,� fully specifies the polytope of
interest. In passing we note that, with the change of variable
tk = log θk − K−1 ∑K

�=1 log θ�, we can write linear equalities
on variables t ∈ R

K satisfying
∑K

k=1 tk = 0, and this is a one-
to-one transformation (Dempster 1972, p. 264). Then F(u) can
equivalently be seen as a polytope defined by linear constraints
−∑K

k=1 tk ≤ 0,
∑K

k=1 tk ≤ 0, and t� − tk ≤ log ηk→�

for all k, �. Such representation could be useful in the system
reliability setting described by LV, since constraints on products
of variables would become linear upon applying a logarithm.
Similarly in Section 5.1 we can turn the positive association
constraint “θ1θ4 > θ2θ3” into linear constraints.

Using the half-space representation, lower and upper
cumulative distribution functions, such as represented in
Figure 6, can be obtained by solving linear programs, namely
minθ∈F(u) ±θk for component k. HHZ mentioned a problem
of the form minθ∈F(u) |θ − p̂|22 where p̂ ∈ � is a given
point. This is a quadratic program, that can be solved for
realistic problem sizes. HHZ also described a program of
the form minθ∈F(u) −|θ − p̂|22, which is less standard, and
seems challenging. The constraints are again linear, and the
objective is quadratic, concave and separable; a quick search
points to Kalantari and Rosen (1987), Shen et al. (2016), and
Telli, Bentobache, and Mokhtari (2020). Furthermore, there
are generic methods to optimize differentiable functions over
polytopes, sometimes under the name “linearly constrained
global optimization,” but these might require more tuning, more
computing power, and return results with fewer guarantees.

We illustrate some of these considerations with numerical
experiments. The timings are obtained on a single processor
(Intel Core i9 at 2.4Ghz). We consider a total of N = 500
counts, sampled uniformly over 50 categories; the observed
counts are between 4 and 16 across these 50 categories. Using
the coupling techniques of Biswas, Jacob, and Vanetti (2019),
we find that 40 iterations are enough for the estimated total
variation upper bound between the chain and the target dis-
tribution to be less than 1%. We measure 0.5 sec to perform
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Figure R1. Inference on θ1 (R1a) and on log(θ1/θ2) (R1b) using counts (4, 3) (K = 2) and adding various numbers of empty categories to arrive at K = 512, or even
K = 1069. Including empty categories modifies the inference on θ1 but not on θ1/θ2.

each iteration, that is, a full sweep of conditional updates. We
next perform 150 iterations and discard the first 50 as burn-in,
conservatively. We next add 150 empty categories to each of the
100 polytopes. We record that it takes about 5 sec to incorporate
150 empty categories to all 100 polytopes, resulting in 100
matrices (ηk→�) of size 200 × 200, describing polytopes within
the simplex of dimension 200. We measure that the time to
solve the linear program minθ∈F(u) θ1 (once) is about 0.15 sec,
and the time to solve the quadratic program minθ∈F(u) |θ −
p̂|22 (once), where p̂ is the vector of observed frequencies, is
about 1 sec.

Therefore, inference using the proposed algorithm can be
done in reasonable times, even on a small computer, depending
on the assertion of interest. As illustrated by HHZ, it seems
important to avoid vertex enumeration if possible, beyond small
dimensions. Note that R mentioned works in Robust Bayesian
analysis, such as Betrò (2009), where linear semi-infinite pro-
grams arise. It seems likely that comparable computational tasks
would emerge in any statistical method involving collections of
sets of parameters.

4. Dealing With Very Large Numbers of Empty
Categories

Some comments suggest the consideration of unknown num-
bers of categories or very large numbers of them. DW described
a setting of card shuffling, where N = 100 permutations are
observed among K ≈ 1069 possibilities. As recalled above,
empty categories can be added as a postprocessing step, for
a cost linear in their numbers, but that remains infeasible if
K ≈ 1069.

It might still be possible to obtain or to anticipate the results
of Dempster–Shafer analysis under very large numbers of cat-
egories. We revisit the setting of Figure 6 of the article, where
the nonzero counts are N1 = 4, N2 = 3 and where we
consider the addition of empty categories. By adding up to a
few hundred empty categories, we can see empirically that the
upper probabilities on assertions of the form “θk ∈ [0, t)” go to
one for all t ≥ 0, whereas the lower probabilities are unaffected;
see Figure R1(a). Presumably, this can be established rigorously;
in any case we can guess what would happen with K = 1069.
Regarding assertions of the form “log(θ�/θk) < t,” both lower
and upper probabilities are unaffected by the addition of empty
categories; see Figure R1(b).

The R scripts for these additional experiments have been
added to https://github.com/pierrejacob/dempsterpolytope.
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