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Rejoinder: Let’s Be Imprecise in Order to Be
Precise (About What We Don’t Know)
Ruobin Gong and Xiao-Li Meng

Preparing a rejoinder is a typically rewarding, some-
times depressing and occasionally frustrating experience.
The rewarding part is self-evident, and the depression sets
in when a discussant has much deeper and crisper insights
about the authors’ thesis than the authors themselves.
Frustrations arise when the authors thought they made
some points crystal clear, but the reflections from the dis-
cussants show a very different picture. We are deeply
grateful to the editors of Statistical Science and the dis-
cussants for providing us an opportunity to maximize the
first, sample the second and minimize the third.

1. LET’S AUGMENT OUR SHOES TO FIT OUR
GROWING FEET

Professor Glenn Shafer’s historically infused and the-
oretically fermented insights provided us with an intense
savoring and much lingering. His succinct summary of the
three branches of the art of conjecture of d’Alembert laid
out the contours and interplay among (precise) probabil-
ity, statistics and imprecise probability. The first branch
enters the game of conjecture by manipulating theoreti-
cally precisely specified quantities and models, a game
of precise probability, deducing properties and conse-
quences of a theoretical construct.

The second branch plays the same game empirically,
by focusing on assessing chances and risks from data.
This captures the essences of the current statistical prac-
tices, when empirical assessments are guided by the rules
of precise probability. Principled statistical practices fully
recognize the multiple uncertainties in empirical assess-
ments, and hence have built-in risk assessments for es-
timating the part of uncertainties that can be reasonably
gauged empirically. For parts that cannot be empirically
assessed internally, sensitivity studies have been the pri-
mary tool, precisely because by posting specific alter-
native scenarios, we can traverse within the first two
branches, and hence remain in our comfort zone.

Shafer’s summary made clear that the third branch
clamors more attention than we currently bestow. This
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branch covers the vast majorities of inquires where pre-
cise probabilistic descriptions, whether theoretical or em-
pirical, are inherently incomplete or impossible. In our
own applied work, when we ask a subject expert to pro-
vide a prior, the most precise answer would be of the kind
“I’m quite sure that α is between 1 and 2.” Any further
inquiry about how α is distributed on [1,2] would be met
with either a puzzled face or an answer few of us like:
“I have no idea.”

Such “no-idea” answers have motivated many to work
harder throughout history. Nevertheless, currently we are
still forced to make up assumptions, such as α is dis-
tributed uniformly on [1,2], for the sole purpose of ap-
plying available theories or methods. Or as Shafer put it,
despite efforts to move bits of the third branch into the
first two, “the third still seems very large.”

Instead of cutting feet to fit shoes, the framework of im-
precise probability (IP) suggests a less painful paradigm:
expanding the shoes to fit the feet. This metaphor has
another leg to stand on because the imprecise shoes are
no less functional than the precise ones. As Augustin
and Schollmeyer emphasized, IP should have been bet-
ter named as “set-valued probability.” But sound statisti-
cal inference is already set-valued, as classical paradigms
have delivered via confidence intervals and Bayesian
credible sets, in order to reflect inferential uncertainty.
In that sense, the set-valued output of IP models is no less
familiar a mathematical form than that from precise prob-
ability models, albeit carrying a different interpretation of
“uncertainty”. It is therefore natural for us to ask: why
can’t we go from set-valued input to set-valued output di-
rectly, instead of squeezing through the narrow tunnel of
numerically valued probability?

2. TWO CONCERNS THAT MOTIVATED OUR WORK

To answer this question, we would like to elaborate our
view on the role of imprecise probabilities and their ac-
companying updating rules. We surmise nearly all statis-
ticians take for granted that probability is the language
of uncertainty. And by probability, we specifically mean
countably additive probability that obeys the Kolmogorov
axioms. Bayesians, Frequentists, as well as those who en-
tertain fiducial, structural and functional inference, all op-
erate within a framework that guides the expression of
uncertainty relating observable information to unknown
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quantities of interest, and in this sense, update their
knowledge in light of what has been learned.

Probability is the magical lasso with which statisticians
tame unruly variabilities. We use probability to gloss over
irregularities that we prefer not delve deeper to model. We
invoke, often rightly so, some notions of independence
or exchangeability, motivated by our ignorance on any
relational information. We use ignorance to our advan-
tage: the theory of randomization is founded on variabil-
ities, artificially induced in a way that make us conclude
that we are better off not to delve deeper. The essence
of any statistical analysis relies on the judicious reduc-
tion of the unknown and the unknowable into known or
knowable probabilities. One of us discussed (Meng, 2014,
Liu and Meng, 2016, Li and Meng, 2021) the multiresolu-
tion nature of inference, which gives meaning to the word
“judicious” in this context via the choice of the resolution
level. Reduction is great—until when it has gone too far
to the point of absurdity, that is, the resolution becomes
too low. This is where imprecise probabilities comes in.

In general, we are concerned with the change of the
“model” P(A) to PB(A), after B has been learned. We
borrow here Hausdorff’s notation for relative probability,
introduced by Shafer. The Bayes rule, namely the asser-
tion that upon observing event B , the agent shall replace
her prior belief P(A) about A with the conditional prob-
ability P(A | B), has been justified as the rule to instill
such a change, even in the context that such learning is
to happen dynamically over time. Carnap (1962) called
CrX,T (H) the degree of credence of agent X toward as-
sertion H at time T , and CrX,T (H | E) the conditional
credence if X ascertained that proposition E holds. He
maintained that if E is the observational data received
by X between times t1 and t2, the rational and coherent
agent X must transform their credence at time t1 to time
t2 as CrX,t2(H) = CrX,t1(H | E). Teller (1973)’s dynamic
Dutch book argument attempted to compel the same con-
clusion. He argued that if an agent engages in a mixture of
regular and called-off bets at prices that differ from their
assessed marginal and conditional probabilities of the un-
certain outcome, they would be made a sure loser by the
exploitative (and know-it-all, we must add) bookie.

These arguments, although compelling, were applica-
ble only within a limited and highly idealized scope. To
dynamically update one’s credence via Bayesian condi-
tionalization requires that the agent knows the “full road
map” ahead of time, which typically is not the case in
practice. This is why, first and foremost, we celebrate the
potential of IP tools in resolving this matter. We are there-
fore happy to see the support and enhancement by the
discussants from multiple vantage points. Augustin and
Schollmeyer provided us with a succinct overview of the
use of credal sets in statistical inference, which is appeal-
ing because it is rooted in distributional families, a con-
cept familiar to statisticians. Liu and Martin, here and

more generally in their work on inferential models (IM;
Martin and Liu, 2015), argued that to achieve the valid-
ity as they defined, we must resort to IP models. Wheeler
opened our eyes further by introducing us to a world with
constructs that are even more primitive than credal sets.

Nevertheless, invoking IP quantification resolves only
one aspect of the overly aggressive reduction to uncer-
tainty reasoning that requires precise probabilities. In
many situations, the statistician regardless of persuasion
must contemplate how to update knowledge, not in terms
of uncertainty but rather in the presence of uncertainty.
By in the presence, we mean that the analyst is not certain
of what model structure they are to construct in the first
place, or that they do not have an idea how isolated pieces
of information, such as individual observations, interact
with each other. In the terminology of Liu and Martin,
it is the “association equation” that is ill-defined. This is
why the focus of our article is not on the IP description
itself, but rather conditioning (and by extension, combin-
ing) rules for IP. For example, what is our equivalent go-to
assumption, like exchangeability in the precise world?

The examples presented in our article were chosen
for their simple nature. Thus, when disagreements arise
among the rules in question, not only is their effect un-
mistakably stark, but also the reader may appeal to her/his
intuitive judgment as to which answers are more sensible
than others. The IM treatment offered by Liu and Mar-
tin works well in these situations, because it is known to
the modeler ex ante what kind of inferential conclusion
is more desirable. Their model building process, includ-
ing the specification of the association and the choice of
the predictive random set, reflects these convictions of the
modeler and produces—without surprise—results that are
both desirable and intuitive. Pedagogical examples can go
only so far, however. The leap from simple examples to
reality deprives the modeler the luxury of intuition, and
the decision on how to update becomes nontrivial when it
is no longer preceded by the answer. Just like other modes
of IP-based frameworks of inference, the IM framework
is faced with a nontrivial choice of rules when it comes to
combining marginal models (Martin and Syring, 2019).
A fundamental question is whether this choice shall be
guided by so-called desirable properties that pertain to the
resulting answer, knowing that our notion of what proper-
ties are desirable is riddled with inaccurate assumptions,
which IP models aim to address in the first place.

3. PARTIAL ORDERING: IS IT A FEATURE
OR A BUG?

Mathematically, the multiplicity of rules is a result of
using sets to capture the low-resolution nature of our data
or information (Gong and Meng, 2021). Sets obey only
partial ordering: a set A can be neither larger nor smaller
than another set B . Just as ambiguities in life typically
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lead to multiple scenarios, partial ordering permits mul-
tiple ways to revise our probabilistic assessments to take
into account additional considerations. We therefore ar-
gue partial ordering necessitated by treating sets as the
fundamental building blocks for probability specifications
is rather a feature, not a bug, for dealing with impre-
cise data, information, or other forms of inconclusive ev-
idence.

Our article focused mostly on studying and comparing
individual rules, instead of seeking a deeper unification.
We are therefore grateful to Augustin and Schollmeyer
for giving us a healthy dose of depression, as their ele-
gant envelope representation is the unification we missed
when we attempted to discuss the “optimism” of Demp-
ster’s rule, the “pessimism” of the Geometric rule, and the
“conservatism” of the generalized Bayes rule, in the three-
prisoner example. Their envelope representation makes
it crystal clear that (1) ideological differences are inher-
ently embedded into the rules, hence are omnipresent; and
(2) behavioral differences among the rules are driven by
their underlying ideology.

The envelope representation formulates all three rules
as obtaining extreme probabilities subject to different
constraints in a family of distributions. The generalized
Bayes rule is the most conservative because it assumes no
(further) constraint, resulting the widest possible proba-
bility interval [P ,P ]. To better understand the optimism
of Dempster’s rule and the pessimism of the Geometric
rule, it helps to consider the case of belief function, where
we can map a set of probabilities to an ordinary probabil-
ity of sets (e.g., Gong and Meng, 2021).

Under the precise probability formulation, when we
reassess a probability by moving from its original state
space � to a subset S ⊂ �, we will permit (and permit
only) any ω ∈ S. In contrast, for belief function, “mov-
ing from � to B” can have multiple interpretations due to
the ambiguity from partial ordering. We can take the most
generous route by permitting any (nonzero mass) set A ⊆
� that is not ruled out by B , that is, any A∩B �= ∅. This is
the route that Dempster’s rule takes, an optimistic choice
since A ∩ B �= ∅ permits (far) more states ω than A = B

would. In contrast, the Geometric rule permits only any
A ⊆ B . That is, a state ω (and its parental set A) is per-
mitted only if it is in B , hence the most pessimistic—or
putting it more positively—the most cautious route. One
can also “refuse” to make a choice by seeking extremes
over all the rules, but that merely means adopting the gen-
eralized Bayes rule, which in our view brings another kind
of trouble, as Section 5 will discuss.

4. ARE WE TOO PESSIMISTIC?

Wheeler and Liu-Martin cast their discussions from
very different perspectives. Wheeler’s supplied rich back-
ground from the IP literature accompanied by a logician’s

rigor and insight. Liu and Martin took an operational per-
spective with an utilitarian flavor. They, however, reached
essentially the same conclusion, that our article projects
a sense of pessimism by (overly) emphasizing “intrinsic
contradictions” within the IP paradigm. Wheeler pointed
out that we missed the entire contemporary theory of
lower previsions, which includes lower probabilities as
a special case, and where “coherence preservation under
inference is inviolable.” Liu and Martin criticized us for
not imposing criteria of reliability, which could cure or at
least reduce our unsettling feeling.

Wheeler was entirely correct that we missed the theory
of lower previsions. We are frustrated by our ignorance,
and the long learning curve, reflecting Shafer’s observa-
tion that “the theory of imprecise probability has flour-
ished for several decades, but largely outside of statistics
journals.” We therefore particularly appreciate the editors
of Statistical Science for seeing the value of this topic
and for organizing this discussion, which also provides
us with a great learning opportunity.

Liu and Martin were also correct that we did not ex-
plicitly impose any reliability criteria. In the sentence
they quoted, we made it explicit that the rules are “pre-
specified,” and the choice of criteria is a part of the pre-
specification. To us, precise probability is the grammar
for statistical inference under the highest-resolution spec-
ifications, that is, when we can—or pretend we can—
postulate probability specifications on all individual ele-
ments in however complicated or high-dimensional joint
state spaces. Adopting the Bayes rule as suggested by the
Bayes theorem, a consequence of precise probability, can
be viewed as a reliable, criteria-driven exercise (e.g., by
imposing the coherence requirement). But as Shafer cor-
rectly pointed out, the distinction between Bayes rule and
Bayes theorem has been essentially ignored in the statis-
tical literature (and we certainly accept Shafer’s criticism
for our own “confusing” mix of the two). We surmise this
was largely due to acceptance of precise probability as a
reliable grammar for statistical inference, and hence any
rules set or implied by it would be accepted without the
need for further criteria to justify them.

An initial motivation for our work was our desire to find
out the natural generalization of the Bayes rule, as given
by Shafer’s (1), in the world of imprecise probabilities.
The singular form of “generalization” was intended, as
for decades, one of us believed (or hoped) that Dempster’s
rule was the natural generalization of the Bayes rule, im-
plied by some “Dempster theorem,” a consequence of the
belief function apparatus. The dream was broken when
the other of us actually studied the issue (not just dreamt
about it), and what we presented was a part of that broken
dream.

We therefore hoped that we were wrong, and that our
“pessimism” was a result of our ignorance, that is, we had
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not looked hard enough. Consequently, we were excited
initially by Wheeler’s emphasis that what we explored
only reflected what was known before either of us was
born. Whereas we definitely want to and will study the
more contemporary theory of lower previsions, a more
careful reading of Wheeler’s discussion reignited our un-
settling feeling because the lower previsions preserve only
the coherence, and Wheeler’s conclusion is that the gen-
eralized Bayes rule is still his preference. That is, our pes-
simism is not a reflection of our ideology, but fundamental
to the marriage of coherence with IP, as we explain below.

5. SHOULD WE ALSO AVOID FATAL ATTRACTION?

If coherence were the only desirable criterion, the gen-
eralized Bayes rule would indeed be the choice. However,
the generalized Bayes rule suffers from a flaw that is no
less serious or fatal than being incoherent, that is, it cannot
get itself out of the vacuous state of knowledge, regardless
of the amount of data or information one accumulates. In
other words, the vacuous state is a fatal attraction state
of the generalized Bayes rule. We want to emphasize that
the “vacuous state” is not a strawman. Much of “objec-
tive Bayes” or fiducial inference hopes to conduct distri-
butional inference without imposing any prior knowledge,
that is, to start with the vacuous state. Any updating rule
that has the vacuous state as its fatal attraction clearly will
be eliminated from the start.

Similarly, the fact that Liu and Martin’s “validity” re-
quirement can lead to the vacuous state as the only so-
lution (e.g., see Section 4.3 of Liu and Martin’s discus-
sion) raises the question of the general desirability or even
the validity of this “validity” requirement. Indeed, Liu–
Martin’s validity requirement is fundamentally a frequen-
tist calibration construct, like unbiasedness for testing. It
inherits the known defects of their classical counterparts
(e.g., controlling Type I error), such as a lack of relevance,
or making the wrong trade-off by assigning higher confi-
dence to harder problems (e.g., Liu and Meng, 2016).

We raise these points not to suggest that we have bet-
ter solutions, but to reaffirm that judicious judgment and
choices are inevitable. Inference is not possible without
making assumptions, and any assumption is a judgmental
call, judicious or not. The dominant emphasis on coher-
ence in the IP literature suggests that itself is a choice.
The generalized Bayes rule is the only coherent updating
rule for sets of probabilities in the sense of avoiding sure
loss. However, it is incompatible with other sensible con-
siderations, such as avoiding fatal attraction of the vacu-
ous state, posing an intrinsic contradiction that we must
accept.

6. THE DEMAND (AND SUPPLY) FOR JUDICIOUS
JUDGMENT

Even in the precise probability situation, the analyst of-
ten does not know what model to specify, except that their

partial and meta-knowledge makes them realize that the
Bayesian recipe of conditionalization may not be the best
course of action under the model they are forced to posit.
An example of this is on modularized Bayesian infer-
ence and cut distributions (Liu, Bayarri and Berger, 2009,
Lunn et al., 2009, Plummer, 2015, Jacob et al., 2017),
inspired by Bayesian pharmacokinetics and pharmacody-
namics (PKPD) models. The analyst has information that
a certain margin of the joint model may involve poor qual-
ity data or information, and would like to sever the contri-
bution of this margin to other parts of the model for which
the analyst has scientific interest. In theory, if we know
how to quantify data or information quality, we can in-
corporate such quantification properly in our probabilistic
model. Following the Bayesian recipe, such as condition-
ing, would lead to sensible inference that properly weights
various pieces of information by their quality index. How-
ever, other than for linear estimates and estimators (Meng,
2018), quantifying deterioration in quality due to nonsam-
pling mechanisms is currently infeasible.

A common practical approach is then to attach zero
weight to the problematic aspects of the data or model,
that is, to “cut them off.” This is often a better strat-
egy than keeping them, because zero weight is likely a
better approximation to the (unknown) optimal weights
than blindly pretending that all parts of the data or model
should be given the standard treatments, for example,
equal weighting. Evidently, such “updating” procedures
through cut distributions do not conform to Bayesian con-
ditionalization. However, they tend to yield better results
in practice, because they are better approximations to the
optimal but inoperable Bayesian approach under the fully
correctly specified model, than mechanically applying the
Bayesian rule to the misspecified model.

We therefore thank Augustin and Schollmeyer for their
proposal of soft revision, as a customizable updating rule
that bridges the pessimist Geometric rule and the opti-
mist Dempster’s rule, to which they drew a connection to
the maximum Bayes factor approach of Good (1967) and
an analogy with empirical Bayes. We were reminded of
Lindley’s declaration that “there is no one less Bayesian
than an empirical Bayesian” (Lindley, 1969, in discussion
of Copas, 1969). As much as the proposed soft revision
ventures outside the realm of coherent Bayesianism, it is
a useful and welcome addition to the toolbox of the prac-
tical statistician, one that could help us avoid the fatal at-
traction.

As we encourage the use of imprecise probabilities,
there is risk in harming the operationalizability of the
statistical inference framework. We view this as yet an-
other instance of the omnipresent no-free lunch princi-
ple. Indeed, there is a price to pay even for every pre-
cise generalization of the ordinary probability calculation.
Good (1966) advocated for probabilities of higher types
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as a candidate measure of nonmeasurable events. He re-
marked, however, that probabilities of higher types are ex-
pressible only in terms of inequalities that are fuzzy in na-
ture, and quickly lose practical importance the higher in
type they go. Similarly, if we were to jettison the notion
of a relatively well-defined protocol, and possibly other
aspects of routine practice of model building, it would not
be long before a necessary level of operationalizability is
lost.

As widely endorsed as Bayesian analysis is among
applied statisticians, its computational challenge once
was considered insurmountable, until the MCMC rev-
olution brought the change. Customizable apparatuses,
such as WinBUGS and Stan, made Bayesian computa-
tion on large-scale datasets widely accessible. By way
of contrast, computation for IP models in statistical in-
ference is still in its early development. The SIPTA (So-
ciety for Imprecise Probability: Theories and Applica-
tions) community has seen recent advances on the use
of MCMC to estimate lower expectations (Fetz, 2019,
Decadt, de Cooman and De Bock, 2019). The statistical
literature is starting to catch up in that regard. The recent
work of Jacob et al. (2021) developed the first workable
sampler for the random convex polytope characterizing
the Dempster–Shafer inference for categorical data, pro-
posed 50 years prior (Dempster, 1966, 1972).

The motto of the SIPTA community is that there are
more uncertainties than probabilities. As statisticians, we
are eager to see this reflected in the practice of statistical
inference. By conducting imprecise probability inference,
we can be precise about what we do not know, and hence
deliver more replicable results because we avoid making
up assumptions forced upon us by the precise probability
framework. We therefore invite anyone who cares about
scientific replicability to look into what the world of IP
can offer.
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