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Judicious Judgment Meets Unsettling
Updating: Dilation, Sure Loss and
Simpson’s Paradox1

Ruobin Gong and Xiao-Li Meng

Abstract. Imprecise probabilities alleviate the need for high-resolution and
unwarranted assumptions in statistical modeling. They present an alternative
strategy to reduce irreplicable findings. However, updating imprecise mod-
els requires the user to choose among alternative updating rules. Competing
rules can result in incompatible inferences, and exhibit dilation, contraction
and sure loss, unsettling phenomena that cannot occur with precise probabil-
ities and the regular Bayes rule. We revisit some famous statistical paradoxes
and show that the logical fallacy stems from a set of marginally plausible yet
jointly incommensurable model assumptions akin to the trio of phenomena
above. Discrepancies between the generalized Bayes (B) rule, Dempster’s
(D) rule and the Geometric (G) rule as competing updating rules for Choquet
capacities of order 2 are discussed. We note that (1) B-rule cannot contract
nor induce sure loss, but is the most prone to dilation due to “overfitting”
in a certain sense; (2) in absence of prior information, both B- and G-rules
are incapable to learn from data however informative they may be; (3) D-
and G-rules can mathematically contradict each other by contracting while
the other dilating. These findings highlight the invaluable role of judicious
judgment in handling low-resolution information, and the care that needs to
be take when applying updating rules to imprecise probability models.

Key words and phrases: Imprecise probability, model uncertainty, Choquet
capacity, belief function, coherence, Monty Hall problem.

1. THERE IS NO FREE LUNCH

Statistical learning is a process through which models
perform updates in light of new information, according
to a prespecified set of operation rules. As new observa-
tions arrive, a good statistical model revises and adapts
its uncertainty quantification according to what has just
been observed. If a model a priori judges the probability
of an event A to be P(A), after learning event B hap-
pened, it may update the posterior probability according
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to the Bayes rule:

P(A | B) = P(A)
P (B | A)

P (B)
.

Exactly one of three things will happen: P(A | B) >

P(A), P(A | B) < P(A) or P(A | B) = P(A). Moreover,
P(A | B) > P(A) if and only if P(A | Bc) < P (A), that
is, if B expresses positive support for A, its complement
must express negative support. The comparison of prior
and posterior probabilities of A encapsulates its associa-
tion with the observed evidence B , a fundamental charac-
terization of the contribution made by a piece of statistical
information.

Nevertheless, there exist modeling situations in which
associations do not comply with our well-founded intu-
ition. We sketch a series of such examples, well known
from textbook probability problems to real-life statistical
inference, which will serve as the basis of our analysis
throughout the paper. Many of them, known as paradoxes,
bear multiple solutions that have long been the center of
dispute and explication in the literature. What makes all of
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them thought provoking is the apparent change from prior
to posterior judgments of an event of interest that most
will find counterintuitive. That, as we will see, is a conse-
quence of the ambiguity in the probabilistic specification
of the model itself, ambiguity that cannot be meaningfully
resolved by any automated rule.

1.1 Statistical Paradox or Imprecise Probability?

EXAMPLE 1 (Treatment efficacy before and after ran-
domization; Section 2.2). Patients Oreta and Tang are
participating in a clinical trial, in which one of them will
receive treatment I, and the other treatment II, with equal
probability. Let A denote the event that Oreta will im-
prove more from this trial than Tang (assuming no ties),
and let B denote the event that Tang is assigned to treat-
ment I. Before the treatment is assigned, we clearly have
P(A) = 1/2 because the situation is fully symmetric (in
the absence of any other information). However, after the
assignment is observed, we seem to have no good idea of
the value of either P(A | B) or P(A | Bc), other than they
are both bounded within [0,1].

Example 1 showcases a severe form of “confusion” ex-
pressed by the model as the prior probability updates to
posterior probability in light of any new information. The
precise prior judgments P(A) = 1/2 and P(Ac) = 1/2
are both bound to suffer a loss of precision by the sheer
act of conditioning on any event in B = {B,Bc}. A central
topic of this paper is the dilation phenomenon, revealed
by Good (1974) and investigated in depth by Seidenfeld
and Wasserman (1993), Herron, Seidenfeld and Wasser-
man (1994, 1997), Pedersen and Wheeler (2014). A for-
mal definition is given in Section 3.1.

EXAMPLE 2 (The boxer, the wrestler and the coin
flip (Gelman, 2006); Sections 3.1 and 6.2). The great-
est boxer and the greatest wrestler are scheduled to fight.
Who will defeat the other? Let Y = 1 if the boxer wins;
Y = 0 if the wrestler wins. Also, let X = 1 if a toss
of a fair coin yields heads; X = 0 if tails. A witness
at both the fighting match and the coin flip tells us that
X = Y . Given this, what is the boxer’s chance of winning,
P(Y = 1 | X = Y)?

EXAMPLE 3 (Three prisoners (Diaconis, 1978,
Diaconis and Zabell, 1983); Sections 3.2 and 6.3). Three
death row inmates A, B and C are told, on the night be-
fore their execution, that one of them has been chosen at
random to receive parole, but it will not be announced
until the next morning. Desperately hoping to learn im-
mediately, prisoner A says to the guard: “Since at least
one of B and C will be executed, you will give away no
information about my own chance by giving the name of
just one of either B or C who is going to be executed.”
Convinced of this argument, the guard truthfully says, “B
will be executed.” Given this information, how should A

judge his living prospect, P(A lives | guard says B)?

EXAMPLE 4 (Simpson’s paradox (Simpson, 1951,
Blyth, 1972); Section 5). We would like to evaluate the
effectiveness of a novel treatment (experimental) com-
pared to its standard counterpart (control). Let Z = 1
denote assignment of the experimental treatment, 0 the
control treatment, and let Y = 1 denote the event of a re-
covery, 0 otherwise. Let U ∈ {1,2, . . . ,K} be a covariate
of the patients, a K-level categorical indicator variable.
One could imagine K to be very large, to the extent that
the univariate U creates sufficiently individualized strata
among the patient population.

Suppose we learn from reliable clinical studies that the
experimental treatment works better than the control for
all K subtypes of patients. That is, for k = 1, . . . ,K ,

pk ≡ P(Y = 1 | Z = 1,U = k)

> qk ≡ P(Y = 1 | Z = 0,U = k).
(1.1)

Nevertheless, field studies consisting of feedback reports
from clinics and hospitals seem to suggest otherwise; that
on an overall basis, the control treatment cures more pa-
tients than the experimental treatment. That is,

p̄obs ≡ Pobs(Y = 1 | Z = 1)

< q̄obs ≡ Pobs(Y = 1 | Z = 0).
(1.2)

How do we resolve the apparent conflict between the con-
ditional inference in (1.1) and the marginal inference in
(1.2)?

The above examples will be examined in detail in Sec-
tions 2 through 4. All of them, despite disguised with cun-
ning descriptions, share the characteristic of an imprecise
model. Their narratives imply the existence of a joint dis-
tribution, yet only a subset of marginal information is pre-
cisely specified.

For instance, in Example 1, while the treatment assign-
ment (B) is known to be fair prior to randomization, the
improvement event A is not measurable with respect to
the B margin, effectively posing a Fréchet class of joint
distributions on the {A,B} space. The only statements
we can make about P(A | ∗) are the trivial bounds that
0 ≤ P(A | ∗) ≤ 1, whether ∗ is B or Bc, leading to the
dilation phenomenon. In Example 2, the coin margin X

is fully known a priori, but the relationship between the
fighters Y and the coin X, crucial for quantifying the event
{X = Y }, is unspecified. In Example 3, the guard’s ten-
dency to report B over C is unspecified in the case that A

was granted parole, yet A’s survival probability depends
critically on this reporting tendency. In Example 4, the
joint specification of {Z,U} is missing, and that happens
to be key to the seemingly paradoxical reversal effect. In
all of these examples, the water is muddied by an unspec-
ified but necessary piece of relational knowledge, which
in turn imposes on the modeler a choice among a multi-
plicity of updating rules, each supplying a distinct set of
assumptions to complement this ambiguity.
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1.2 What do We Try to Accomplish in This Paper?

Unsettling phenomena to be discussed in this paper re-
flect unusual ways through which more information can
seemingly “harm” our existing knowledge of the state
of matters. These phenomena are not foreign to statisti-
cians, but are seen as anomalies or even paradoxes, far
from everyday model building. In fact, whenever there is
a fully and precisely specified probability model, none of
these phenomena would occur. Would not we all be safer
then by staying away from any imprecise model? Quite
the contrary, we argue. Imprecise models are unavoidable
even in basic statistical modeling, and sometimes they are
disguised as precise models only to trick us into blindness.
Simpson’s paradox, re-examined in Section 5, is one of
such cases. Without acknowledging the imprecise nature
of modeling, one is ill-suited to make judicious choices
among the updating rules and treatments of evidence.

We aim to investigate these perceived anomalies as they
occur during the updating of imprecise models, and their
implications on the choice of updating rules. Imprecise
models in statistical modeling are ubiquitous and can be
easily induced from precise models through the intro-
duction of external variables. When model imprecision
is present, a choice among updating rules is a neces-
sity, and it reflects the modeler’s judgment on how sta-
tistical evidence at hand should be used. With the recent
surge of interest in imprecise probability-based and re-
lated statistical frameworks including generalized Fidu-
cial inference (Hannig et al., 2016), confidence distri-
bution (Hannig and Xie, 2012, Xie and Singh, 2013,
Schweder and Hjort, 2016) and inferential models (Martin
and Liu, 2016), we are compelled to bring attention to the
nonnegligible choice of combining and conditioning rules
for statistical evidence.

The remainder of this paper starts with an introduction
to some formal notation of imprecise probabilities in Sec-
tion 2.1, particularly of Choquet capacities of order 2 as
well as belief functions, a versatile special case which can
also be formulated as a precise model for imprecise states,
that is, set-valued random variables. Three main updat-
ing rules are introduced in Section 2.2, all of which are
applicable to Choquet capacities of order 2. Section 3 de-
fines dilation, contraction and sure loss as phenomena that
happen during imprecise model updating, and Section 4
compares and contrasts the behavior of the three updating
rules, especially as they exhibit dilation and sure loss, and
illustrates them with an additional example. Section 5 ex-
tends the discussion from conditioning rules to marginal-
izing rules by showing how Simpson’s paradox is a con-
sequence of an ill-chosen updating rule that induces sure
loss in aggregation. It also shows how imprecise models
can be easily induced from precise ones. When do the up-
dating rules differ, and how? We believe these questions
will shed light on the means through which information

could contribute to imprecise statistical models, a topic
we discuss in Section 6, among others.

2. IMPRECISE PROBABILITIES AND THEIR
UPDATING RULES

2.1 Lower and Upper Probabilities

This section introduces formal concepts and notation
for imprecise probability needed within the scope of this
paper. Readers who are familiar with the notions of lower
and upper probabilities, Choquet capacity and belief func-
tion may skip to Section 2.2.

DEFINITION 2.1 (Lower and upper probabilities). Let
� be a separable and completely metrizable space, B(�)

its Borel σ -algebra and M the set of all probability mea-
sures on �. The lower and upper probabilities of a set of
probability measures � ⊂ M are set functions

P(A) = inf
P∈�

P(A), and P (A) = sup
P∈�

P(A),

for all A ∈ B(�). P and P are conjugate in the sense that
P(A) = 1 − P(Ac).

The conjugacy of P and P means that knowing one is
sufficient for knowing the other. We may refer to either
one individually with the understanding of their one-to-
one relationship. Next, we introduce Choquet capacities,
an important class of imprecise probabilities widely used
in robust statistics (Huber and Strassen, 1973).

DEFINITION 2.2 (Choquet capacities of order k).
Suppose P is a lower probability such that {P ∈ M ;P ≥
P }, the set of probability measures compatible with P is
relatively compact .1 P is a Choquet capacity of order
k, or k-monotone capacity, if for every Borel-measurable
collection of {A,A1, . . . ,Ak} such that Ai ⊂ A for all
i = 1, . . . , k, we have

(2.1) P (A) ≥ ∑
∅ �=I⊂{1,...,k}

(−1)|I |−1P

(⋂
i∈I

Ai

)
,

where |S| denotes the number of elements in the set S. Its
conjugate capacity function P is a called a k-alternating
capacity, because it satisfies for every Borel-measurable
collection of {A,A1, . . . ,Ak} such that A ⊂ Ai for all i =
1, . . . , k,

(2.2) P (A) ≤ ∑
∅ �=I⊂{1,...,k}

(−1)|I |−1P

(⋃
i∈I

Ai

)
.

1A set of probability measures � on (�,B(�)) is relative compact
if every sequence of elements of � contains a weakly convergent sub-
sequence. By Prokhorov’s theorem, � is relatively compact if and only
if it is tight. See Chapter 1.5 of Billingsley (2013).



172 R. GONG AND X.-L. MENG

If a Choquet capacity is (k + 1)-monotone, it is k-
monotone as well. The smaller the k, the broader the
class. In particular, Choquet capacities of order 2 satisfy
P(A ∪ B) ≥ P(A) + P(B) − P (A ∩ B) for all A,B ∈
B(�). A most special case of Choquet capacity is belief
function (Shafer, 1979).

DEFINITION 2.3 (Belief function). P is called a be-
lief function if it is a Choquet capacity of order ∞, that is,
if (2.1), and hence (2.2) hold for every k.

Precise probabilities are a special type of belief func-
tion. Indeed, one of the probability axioms requires that
the inequality (2.1) hold with equality for all countable
collections of sets {A,A1,A2 · · · } when A = ⋃

i Ai . In
turn, belief functions make up only a small class of impre-
cise probabilities, with their own specializations and lim-
itations when it comes to characterizing uncertain knowl-
edge. Pearl (1990) noted that many imprecise probabili-
ties expressed in conditional forms, a category in which
Examples 1 and 4 falls, cannot be fully captured by belief
functions. On the other hand, belief functions are versa-
tile in that they possess a second interpretation as a pre-
cise probability distribution over the subsets of �. In other
words, just as a probability function induces a (point-
valued) random variable on � itself, a belief function in-
duces a set-valued random variable on the power set of �.
This point is made clear in the next definition.

DEFINITION 2.4 (Mass function of a belief function).
Suppose � is finite, and P is a belief function on �. The
mass function associated with P is the nonnegative set
function m : P(�) → [0,1] such that

m(A) = ∑
B⊆A

(−1)|A−B|P(B),

for all A ∈ B(�)

(2.3)

where A − B = A ∩ Bc. The mass function m is
uniquely determined by P , and satisfies (1) m(∅) = 0,
(2)

∑
A⊆� m(A) = 1, and (3) P(A) = ∑

B⊆A m(B).

Formula (2.3), called the Möbius transform of P (Yager
and Liu, 2008), specifies a precise probability distribu-
tion over the subsets of �. Definition 2.4 is applica-
ble to finite �, suitable for our discussion of Exam-
ples 2 and 3 in Section 3 as well as Example 5 in Sec-
tion 4.5. Definitions for infinite � can be obtained upon
introducing extra regularity conditions (Nguyen, 1978,
Shafer, 1979), which we will not go into in this paper.

2.2 Updating Rules for Lower and Upper Probabilities

To update a set of probabilities � given a set B ∈ B(�)

is to replace the set function P with a version of the condi-
tional set function P •(· | B). The definition of P • is given
by the updating rule. We emphasize that, to say an event

is “given” does not necessarily mean it is observed. In hy-
pothetical contemplations, we often employ conditional
statements about all events in a partition, for example,
B = {B,Bc}, even if logically we cannot observe B and
Bc simultaneously. Therefore, the phrase “given” should
be understood as imposing a mathematical constraint de-
rived from B . When � contains a single, precise statis-
tical model, the Bayes rule entirely dictates how we use
the information supplied by B . But when � is imprecise
and does not possess sharp knowledge about B , that is,
P (B) < P (B) (Dempster, 1967), the updating rule itself
becomes an imprecise matter. As a consequence, there
exists multiple reasonable ways to use the information
B . For example, whether B supports an assertion A and
whether B fails to contradict A are two different criteria
for admissible evidence. This raises both flexibility and
confusion in defining the updating rules. Here, we sup-
ply the formal definitions of three viable updating rules
for lower and upper probabilities: the generalized Bayes
rule, Dempster’s rule and the Geometric rule. Important
differences and relationships exist among these rules, as
we shall present in Section 4.

To define the generalized Bayes rule, we recall Exam-
ple 1. Using the notation in 2.1, we rewrite the impre-
cise model in terms of its prior upper and lower probabil-
ities of event A, which are precisely one half: P (A) =
P (A) = 0.5. The question is: what are the upper and
lower probabilities of A given the treatment assignments
in B = {B,Bc}? For example, the answer could be

PB(A | B) = 0, PB(A | B) = 1 and

PB

(
A | Bc) = 0, PB

(
A | Bc) = 1.

The expressions PB and PB, where the subscript B is
for Bayes, signify the use of the generalized Bayes rule,
as defined below.

DEFINITION 2.5 (Generalized Bayes rule). Let �

be a convex and closed set of probability measures
on � (with respect to the total variation topology, as
in Seidenfeld and Wasserman, 1993). The conditional
lower and upper probabilities according to the general-
ized Bayes rule are set functions PB and PB such that,
for A,B ∈ B(�),

PB(A | B) = inf
P∈�

P(A ∩ B)

P (B)
,(2.4)

PB(A | B) = sup
P∈�

P(A ∩ B)

P (B)
.(2.5)

That is, the conditional lower and upper probabilities
are respectively the minimal and maximal Bayesian con-
ditional probability among elements of �. In their def-
inition, Seidenfeld and Wasserman (1993) required that
P(B) > 0, which guarantees P(B) > 0 for all P ∈ �.
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This guarantees that the ratios in (2.4) and (2.5) are al-
ways well defined.

The generalized Bayes rule is a most widely employed
updating rule for coherent lower and upper probabilities
(Walley, 1991), and notable for exhibiting dilation. In Ex-
ample 1, as a consequence of employing the rule, the con-
clusion appears puzzling: Tang will surely receive one
of the two treatments, and one would expect that, in the
worst case scenario, learning about the treatment assign-
ment is completely useless, that is, having no effect on
our a priori assessment of P(A). But how could it be that
the knowledge of something can do more harm than being
useless?

To better understand the behavior of the generalized
Bayes rule, we now present two alternative updating rules
for sets of probabilities as means of comparison. Both
Dempster’s rule of conditioning and the Geometric rule
were originally proposed for use with the special case of
belief functions; however, their expressions compose in-
triguing counterparts to the generalized Bayes rule. Sec-
tion 4 is dedicated to a comparison among the trio of rules.

Dempster’s rule of conditioning is central to the
Dempster–Shafer theory of belief functions (Dempster,
1967, Shafer, 1976). The conditioning operation is a spe-
cial case of Dempster’s rule of combination, equivalent
to combining one belief function with another that puts
100% mass on one particular subset, B ∈ B(�), on which
we wish to condition. Specifically, let P be a belief func-
tion such that P(B) > 0, and m be its associated mass
function given by (2.3). Let P 0 be a separate belief func-
tion such that its associated mass function m0(B) = 1.
The conditional belief function PD(· | B) is defined as

PD(A | B) = P(A) ⊕ P 0(B), for all A ∈ B(�),

where the combination operator “⊕” is defined in Shafer
(1976) to imply that the mass function associated with
PD(· | B) is

mD(A | B) =
∑

C∩B=A m(C)∑
C′∩B �=∅

m(C′)
,

for all A ∈ B(�).

(2.6)

Consequently, Dempster’s rule of conditioning yields
the following form.

DEFINITION 2.6 (Dempster’s rule of conditioning).
Let P be a belief function over �, and � the set of
probabilities compatible with P (in the sense of Defini-
tion 2.2). The lower and upper probabilities according to
Dempster’s rule of conditioning are set functions PD and
PD such that for A,B ∈ B(�) with P (B) > 0,

PD(A | B) = 1 − PD

(
Ac | B)

,(2.7)

PD(A | B) = supP∈� P(A ∩ B)

supP∈� P(B)
.(2.8)

Hence PD(A | B) differs from PB(A | B) of (2.5) by tak-
ing the ratio of the suprema, instead of the supremum of
the ratio P(A ∩ B)/P (B). An operational view of (2.8)
is helpful for understanding exactly what information is
retained by Dempster’s rule (Gong and Meng, 2021). De-
note by R the set-valued random variable whose distribu-
tion is dictated by the mass function corresponding to P .
Dempster’s rule of conditioning of P on set B is akin to
applying a B-shaped “cookie cutter” to all realizations of
R. It retains all the nonempty intersections B ∩R, and de-
fines the associated conditional mass function mD(· | B)

according to (2.6), that is, renormalizing m among the R’s
pertinent to the retained sets. The functional form of (2.8)
reveals that, Dempster’s upper conditional probability ad-
mits evidence to its numerator and denominator, both ac-
cording to whether the evidence fails to contradict A ∩ B

and B . This stands in contrast to the Geometric rule pro-
posed by Suppes and Zanotti (1977), as defined below.

DEFINITION 2.7 (The Geometric rule). Let P be a
belief function as in Definition 2.6. The conditional lower
and upper probabilities according to the Geometric rule
are set functions PG and PG such that for A,B ∈ B(�)

with P(B) > 0,

PG(A | B) = infP∈� P(A ∩ B)

infP∈� P(B)
,(2.9)

PG(A | B) = 1 − PG

(
Ac | B)

.(2.10)

Mathematically, the Geometric rule is a dual to Demp-
ster’s rule by replacing the latter’s suprema for upper
probability in (2.8) with the infima for lower probability
in (2.9). Viewed as a set operation, the Geometric rule dif-
fers from Dempster’s rule in that it only retains R if fully
contained within B , and renormalizes the mass function
among the retained sets. Looking at (2.9), the Geometric
lower conditional probability admits evidence to its nu-
merator and denominator, both according to whether the
evidence supports A ∩ B or B .Section 4 further describes
some relationships between the two rules.

Just like the generalized Bayes rule, both Dempster’s
and the Geometric rules suffer from updating anomalies.
In his review of Shafer (1976), Diaconis (1978) discussed
a paradoxical conclusion for the three prisoners example
(reproduced here as Example 3) using Dempster’s rule,
and inquired about the option of the Geometric rule as
an alternative rule of updating. As we will show in Sec-
tion 3.2, the Geometric rule does no better job than Demp-
ster’s rule for this paradox, as in fact both rules exhibit
the sure loss phenomenon. More updating rules for be-
lief functions exist beyond Dempster’s and the Geomet-
ric rule, including the disjunctive rule by Smets (1993)
based on set union operations, the open-world conjunctive
rule which is the unnormalized version of Dempster’s rule
as employed in the transferable belief models, as well as
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others, for example, Yager (1987), Kohlas (1991), Kruse
and Schwecke (1990). Smets (1991) provided a broad
overview of an array of updating rules.

2.3 IP Updating Rules Are Not Pure Conditional
Probabilities

A key distinction between the updating rules for impre-
cise probabilities and the Bayes rule for precise probabil-
ities is that the former does not follow pure conditional
probability calculations, but rather a mixture of proba-
bility and bound-seeking operations. This is most easily
seen in the following expressions obtained by Fagin and
Halpern (1991) for generalized Bayes rule:

PB(A | B) = P (A ∩ B)

P (A ∩ B) + P (Ac ∩ B)
,(2.11)

PB(A | B) = P (A ∩ B)

P (A ∩ B) + P (Ac ∩ B)
.(2.12)

Compared to the familiar Bayes formula

(2.13)

P(A | B) = P(A ∩ B)

P (A ∩ B) + P(Ac ∩ B)

≡ P(A ∩ B)

P (B)
,

we see that the generalized Bayes rule not only replaces
P by P or P , but it also mixes them in one expression.
This mean that in general, the “conditional probability”
obtained by the generalized Bayes rule is not a genuine
probability under a single probability distribution. Worse,
the distributions which attain the extrema, P(S) or P(S),
in general depends on S itself. This is a clear case of
“overfitting,” as probabilities are “cherry-picked” to make
S most or least likely.

One might attempt to fix the mixing issue by replacing
the right-hand sides in (2.11) and (2.12), respectively, by

(2.14)

P(A ∩ B)

P (A ∩ B) + P (Ac ∩ B)
and

P(A ∩ B)

P (A ∩ B) + P (Ac ∩ B)
.

However, P (A ∩ B) + P(Ac ∩ B) generally is smaller
than P (B) because one may be sure that a state is in
B , but unsure if it is in A ∩ B or Ac ∩ B . Indeed,
P(A ∩ B) + P(Ac ∩ B) can be zero, while P(B) > 0.
Similarly, we can have P(A ∩ B) + P(Ac ∩ B) > 1 be-
cause evidence that does not contradict A ∩ B or Ac ∩ B

get double counted in the sum P (A ∩ B) + P(Ac ∩ B).
These observations should remind us that while the ex-

pressions in (2.14) may appear to be natural generaliza-
tions of the Bayes formula in the middle expression of
(2.13), they are not legit probabilistic quantities even in
the context of imprecise probability (e.g., no imprecise
probability can exceed one). Consequently, it makes more

sense to directly use P(B) or P (B) to replace P(B) in the
right-hand expression of (2.13). The results are exactly the
Geometric rule:

(2.15) PG(A | B) = P (A ∩ B)

P (B)
,

and the Dempster’s rule:

(2.16) PD(A | B) = P(A ∩ B)

P (B)
.

Expression (2.15) makes it clear that the Geometric rule
endorses a stringent interpretation of what counts as evi-
dence for both the query (A) and conditioning (B) events,
by admitting only evidence that supports its constituents
into the lower conditional probability. Similarly, (2.16)
shows that Dempster’s rule endorses a lenient interpre-
tation of both parts, by permitting all evidence that does
not contradict into the upper conditional probability.

In contrast, generalized Bayes rule optimizes not over
the space of admissible evidence, but over the set of
all conditional probabilities implied by the prior impre-
cise model. The expressions (2.11) and (2.12) reveal that,
compared to (2.16) and (2.15), the implied criteria of what
counts as admissible evidence is disparate for the query
and conditioning events on the numerator versus the de-
nominator. This results in the aforementioned “overfit-
ting” phenomenon, a point to which we will return in Sec-
tion 3.2.

2.4 Generalizations to Choquet Capacities

The generalized Bayes rule was designed to work with
sets of convex and closed probabilities, of which those
sets of probabilities generated by Choquet capacities of
order 2 are a special case. It has been shown that, when ap-
plied to prior sets of probabilities that are Choquet capac-
ities of order 2, the posterior sets of probabilities by the
generalized Bayes rule remain in the class (Walley, 1981,
Wasserman and Kadane, 1990). That is, Choquet capaci-
ties of order 2 are closed with respect to the generalized
Bayes rule. A natural question then if this property holds
for Dempster’s rule or the Geometric rule. The next the-
orem shows that the answer is yes: Choquet capacities of
order k, for any k ≥ 2, are closed with respect to both
rules.

THEOREM 2.1. Let P be a k-monotone Choquet ca-
pacity on �, and event B such that the set functions
PD(· | B) in (2.7) and PG(· | B) in (2.9) are well defined.
Then PD(· | B) and PG(· | B) are both k-monotone.

PROOF. To say P is k-monotone implies for all Borel-
measurable collections {A1, . . . ,Ak},

P

(
k⋃

i=1

Ai

)
≥

k∑
i=1

P(Ai) − ∑
i<j

P (Ai ∩ Aj)

+ · · · + (−1)k+1P

(
k⋂

i=1

Ai

)
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or, equivalently, P is k-alternating:

P

(
k⋂

i=1

Ai

)
≤

k∑
i=1

P (Ai) − ∑
i<j

P (Ai ∪ Aj)

+ · · · + (−1)k+1P

(
k⋃

i=1

Ai

)
.

For Dempster’s rule, we have

PD

(
k⋂

i=1

Ai | B
)

= P((
⋂k

i=1 Ai) ∩ B)

P (B)
= P (

⋂k
i=1(Ai ∩ B))

P (B)

≤ 1

P(B)
·
[

k∑
i=1

P(Ai ∩ B)

− ∑
i<j

P
(
(Ai ∩ B) ∪ (Aj ∩ B)

) + · · ·

+ (−1)k+1P

(
k⋃

i=1

(Ai ∩ B)

)]

=
k∑

i=1

PD(Ai | B) − ∑
i<j

PD(Ai ∪ Aj | B) + · · ·

+ (−1)k+1PD

(
k⋃

i=1

Ai | B
)
.

Similarly, for the Geometric rule,

PG

(
k⋃

i=1

Ai | B
)

= P ((
⋃k

i=1 Ai) ∩ B)

P (B)
= P(

⋃k
i=1(Ai ∩ B))

P (B)

≥ 1

P (B)
·
[

k∑
i=1

P (Ai ∩ B)

− ∑
i<j

P (Ai ∩ Aj ∩ B) + · · ·

+ (−1)k+1P

(
k⋂

i=1

Ai ∩ B

)]

=
k∑

i=1

PG(Ai | B)

− ∑
i<j

PG(Ai ∩ Aj | B) + · · ·

+ (−1)k+1PG

(
k⋂

i=1

Ai | B
)
.

Hence k-monotonicity is preserved by both Dempster’s
and the Geometric rules of updating when applied to k-
monotone Choquet capacities. �

3. THE UNSETTLING UPDATES IN IMPRECISE
PROBABILITIES

An imprecise model permits, and indeed requires,
a choice of updating rule. Different choices may exhibit
updates with seemingly troubling interpretations, notably
dilation, contraction and sure loss. This section supplies
an in-depth look at these phenomena. The subscript “•”
used in the definitions below is crucial because, given the
same imprecise model specification, a phenomenon can
be induced by one rule but not by another. The choice
among updating rules is inseparable from the choice of
assumption of a missing information mechanism, and it
would be wrong to think that an observable event, as a
mathematical constraint, is taken literatim in imprecise
probability conditioning. The operational interpretations
of Dempster’s rule and the Geometric rule presented in
the previous section highlight clearly the different uses,
by different rules, of the information in the same event
being conditioned upon.

3.1 Dilation and Contraction

DEFINITION 3.1 (Dilation). Let A ∈ B(�) and B be
a Borel measurable partition of �. Let � be a convex and
closed set of probability measures on �, P its lower prob-
ability function, and P • the conditional lower probability
function supplied by the updating rule “•”. We say that B
strictly dilates A under the •-rule if

sup
B∈B

P •(A | B) < P(A) ≤ P(A)

< inf
B∈BP •(A | B).

(3.1)

If either (but not both) outer inequality is allowed to hold
with equality, we simply say B dilates A under the said
updating rule.

Dilation means that the conditional upper and lower
probability interval of an event A contains that of the un-
conditional interval, regardless of which B in the space of
possibilities B is observed. Inference for A, as expressed
by the imprecise probabilities under the chosen updating
rule, will become strictly less precise regardless of what
has been learned. This is commonly perceived as unset-
tling, because one would expect that learning, at least in
some situations, ought to help the model deliver sharper
inference, reflected in a tighter probability interval. But
when dilation happens, it seems that as we learn, knowl-
edge does not accumulate and quite the contrary, dimin-
ishes surely.
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If dilation is something one finds unsettling, the oppos-
ing notion, contraction, should be nothing less. Contrac-
tion happens when the posterior upper and lower probabil-
ity interval becomes strictly contained within that of the
prior, regardless of what is being learned. If a tighter prob-
ability interval symbolizes more knowledge, when con-
traction happens, it is as if some knowledge is created out
of thin air. How could it be that whatever is learned, we
could always eliminate a fixed set of values of probability
that were a priori considered possible? If we could have
eliminated them by a pure thought experiment that can
never fail, why would we not have eliminated them a pri-
ori? Formally, contraction is defined as follows.

DEFINITION 3.2 (Contraction). Let A, B and P • be
the same as in Definition 3.1. We say that B strictly con-
tracts A under the •-rule if

P (A) < inf
B∈BP •(A | B)

≤ sup
B∈B

P •(A | B) < P(A).
(3.2)

If either (but not both) outer inequality is allowed to hold
with equality, we simply say B contracts A under the said
updating rule.

We now illustrate these two unsettling updating phe-
nomena using Example 2, although we defer the discus-
sion of their interpretations to Section 6.

EXAMPLE 2 CONT. (The boxer, the wrestler and the
coin flip). By the setup of the model, we know precisely
that the coin is fair:

(3.3) P(X = 0) = P(X = 1) = 1/2.

However, no information is available about either fighter’s
chance of winning. That is, if we assume the probability
of a boxer’s win P(Y = 1) = p1, p1 is allowed to vary
between [0,1]. Then according to the imprecise model,

(3.4) P (Y = 1) = 0, P (Y = 1) = 1

and similarly so for the wrestler’s win: P(Y = 0) =
0,P (Y = 0) = 1. The known probabilistic margins spec-
ify a belief function, as displayed in Table 1.

When told X = Y , how should the model at hand be
revised? Two aspects are worth noting:

TABLE 1
Example 2 (boxer and wrestler): mass function representation of the

belief function model

Coin lands heads, Coin lands tails,
either fighter wins either fighter wins

(X,Y ) ∈ {1} × {0,1} (X,Y ) ∈ {0} × {0,1}

m(·) 0.5 0.5

(i) Posterior inference for the fighters. As Gelman
(2006) noted, Dempster’s rule contracts the boxer’s
chance of winning, because

PD(Y = 1 | X = Y) = 1/2,

PD(Y = 1 | X = Y) = 1/2,

PD(Y = 1 | X �= Y) = 1/2,

PD(Y = 1 | X �= Y) = 1/2,

which are strictly contained within the vacuous prior
probability interval as in (3.4). The calculations given the
two alternative conditions X = Y and X �= Y are identical
due to symmetry of the setup. In contrast, the generalized
Bayes rule cannot contract vacuous prior interval, in this
example (see below) and in general (see Theorem 4.8).

(ii) Posterior inference for the coin. The generalized
Bayes rule dilates the precise a priori information (3.3)
on the coin’s chance of coming up heads, because

PB(X = 1 | X = Y) = 0,

PB(X = 1 | X = Y) = 1,

PB(X = 1 | X �= Y) = 0,

PB(X = 1 | X �= Y) = 1.

In contrast, Dempster’s intervals remain identical to that
of the prior interval under either X = Y or X �= Y . No-
tice that in this example, P(X = Y) = P(X �= Y) = 0,
hence the Geometric rule is not applicable. The general-
ized Bayes rule in the sense of Seidenfeld and Wasserman
(1993) (see Definition 2.5) is not applicable either, how-
ever, since the the model is a belief function, we use the
result from Fagin and Halpern (1991) as given in (2.11)
and (2.12) to obtain the above expressions. This is equiv-
alent to minimizing and maximizing over the restricted
sets of probabilities {P : P ≥ P ,P (X = Y) > 0} and
{P : P ≥ P ,P (X �= Y) > 0}, respectively, thus avoiding
ill-defined probability ratios.

3.2 Sure Loss

The next type of updating anomaly is even more unset-
tling, as it is usually regarded as an infringement on the
logical coherence of probabilistic reasoning.

DEFINITION 3.3 (Sure loss). Let A, B, P and P • be
the same as in Definition 3.1. We say that B incurs sure
loss in A under the •-rule if either

(3.5) inf
B∈BP •(A | B) > P(A)

or

(3.6) sup
B∈B

P •(A | B) < P(A).
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Sure loss describes a universal and unidirectional dis-
placement of probability judgment before and after con-
ditioning on any event from a subalgebra. That is, after
learning anything, the event in question becomes alto-
gether more (or less) likely than before.

The terminology “sure loss” stems from the Bayesian
decision-theoretic context, where probabilities are seen to
profess personal preferences contingent on which one is
willing to make bets. If B incurs sure loss in A, the be-
holder of P and P • as her personal prior and posterior
imprecise probabilities, respectively, can be made to com-
mit a compound bet with a guaranteed negative payoff. To
see this, let s, t be two numbers such that

inf
B∈BP •(A | B) > s > t > P(A).

We generate sure loss in the form of (3.5). Since t >

P (A), I shall accept a bet for which I pay 1 − t , get 1
back if A did not occur and nothing if it did. My expected
payoff is P(Ac) − (1 − t) = t − P(A) ≥ t − P (A) > 0.
On the other hand, since P •(A | B) > s for all B , con-
tingent on any B , I shall also accept bets for which I
pay s, get 1 back if A did occur and nothing if it did
not. Regardless of which B occurs, my expected payoff
P(A | B) − s ≥ infB∈B P •(A | B) − s > 0. It therefore
seems perfectly logical for me to take both bets, as both
are expected to have positive return. However, if I do take
both bets, then the compound bet is the one with guar-
anteed payoff of only 1, less than what I have paid for
1 − t + s because s > t . Therefore, endorsing P • as the
updating rule means I am willing to accept a finite collec-
tion of bets and certain to lose money, a typical form of
incoherent behavior.

Note that if B incurs sure loss in A in the form of (3.5),
it also incurs sure loss in Ac in the form of (3.6), though
perhaps the term sure gain would be more appropriate—
in Émile Borel’s words, the former the “imbecile” and the
latter the “thief.” Whenever a distinction is necessary, we
will use the term sure gain in addition to sure loss to high-
light the directionality of displacements of posterior prob-
ability intervals compared to that of the prior, and will
otherwise follow the pessimistic convention (which seems
to be a hallmark of statistical or probabilistic terms, such
as “risk,” “regret,” “regression”) of the literature and use
“sure loss” to refer to both situations if nonambiguous.

We emphasize again that both dilation and sure loss,
as concepts describing the change from prior to poste-
rior sets of probabilities, are contingent upon the updat-
ing rule. Even with the same imprecise probability model
P , the same partition B and the same event A, it can well
be the case that B dilates A under one rule and induces
sure loss in A under the other. Example 3 below is a situ-
ation in which all three rules behave very differently, and
Section 4 is dedicated to a characterization of their differ-
ential behavior.

TABLE 2
Example 3 (three prisoners): mass function representation of the

belief function model

A lives, B lives, C lives,
guard says {B, C} guard says C guard says B

m(·) 1/3 1/3 1/3

We are now ready to take a careful look at the three
prisoners paradox.

EXAMPLE 3 CONT. (Three prisoners). What do we
have about the probabilistic model behind the three pris-
oners? Since exactly one of the three prisoners will re-
ceive parole randomly, the prior probabilities of living for
each of them are all exact:

P(A lives) = P(B lives) = P(C lives) = 1/3.

Furthermore, since the guard cannot lie, he has no choice
on who to report if the inquirer A does not receive parole.
That is,

P(guard says C | B lives)

= P(guard says B | C lives) = 1.

The above probability specification can be expressed as a
belief function model, with mass distribution dictated by
the known model margins as represented in Table 2.

We see from the specification that what remains un-
known is, in case A indeed receives parole, the propensity
of the guard reporting either B or C as dead had he the
freedom to choose:

(3.7) δB = P(guard says B | A lives) ∈ [0,1].
As a consequence, the posterior probability of A living is

(3.8) P(A lives | guard says B) = δB

1 + δB

.

This extra degree of freedom δB fully characterizes the set
of probabilities implied by the model.

There is a long literature documenting the variety
of modes of reasoning to this problem. For example,
Mosteller (1965) and Morgan et al. (1991) invoked a simi-
lar construction as the δB above, in explicating the reasons
why many of them are seemingly intuitive yet riddled with
logical fallacies. Four types of “popular” answers are re-
produced below, reflecting different ways of treating the
unknown value δB . What’s interesting is that, as we will
see, three of these answers correspond to those given by
the three conditioning rules respectively.

(i) The indifferentist: assumption of ignorability. One
of the most commonly made assumptions is that the guard
has no preference one way or the other about who to re-
port when given the freedom, that is, δB = 1/2, thus

P(A lives | guard says B, δB = 1/2) = 1/3.
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That is to say, prisoner A would not have benefitted from
the knowledge that B is going to be executed, precisely
as he claimed to the guard to begin with. The assump-
tion of guard’s indifference is equivalent to the ignorabil-
ity assumption commonly employed in the treatment of
missing and coarse data (Rubin, 1976, Heitjan and Ru-
bin, 1991, Heitjan, 1994). Despite being intuitive, the as-
sumption is not backed by the model description per se.
Neither the posited imprecise model nor the data as re-
ported by the guard can supply any logical evidence to
support the ignorability assumption. Therefore, the asser-
tion that ignorability is “intuitive” is a judgment that can
be as unreasonable as any other seemingly less intuitive
ones, such as the ones below.

(ii) The optimist: Dempster’s rule. Applying Demp-
ster’s rule, we have

PD(A lives | guard says B) = 1/2,

PD(A lives | guard says B) = 1/2.

Thus prisoner A felt happier now that his chance of sur-
vival increased from 1/3 to 1/2. This happiness is gained
from assuming the optimistic scenario of δB = 1, that
is, the guard chose a reporting mechanism that has the
highest likelihood given A lives. However, one realizes
that the guard could have only reported either B or C,
both fully symmetrical in the prior. Had the guard said
C would be executed, A would again apply Dempster’s
rule, thus grow happier following the same logic by ef-
fectively assuming δC = P(guard says C | A lives) = 1.
Under the assumption that the guard cannot lie and can-
not refuse to answer, δB + δC = 1, thus δB and δC cannot
be 1 simultaneously. Hence the reasoning that whatever
the guard says, the probability of A living will go up from
1/3 to 1/2, which is equivalent to assuming the impos-
sible δB = δC = 1, is a direct consequence of a logical
fallacy.

(iii) The pessimist: the Geometric rule. Applying the
Geometric rule, we have

PG(A lives | guard says B)

= PG(A lives | guard says B) = 0

and, by symmetry,

PG(A lives | guard says C)

= PG(A lives | guard says C) = 0.

This answer is perhaps the most striking among all, di-
rectly pointing at the absurdity of the assumptions behind
the updating rule within this context. Upon hearing any-
thing, prisoner A will deny himself of any hope of living,
effectively assuming δB = 0 if guard says B and δC = 0 if
guard says C, two assumptions that are incommensurable
with each other because δB + δC = 1, much in the same
way as the previous case with Dempster’s rule.

(iv) The conservatist: generalized Bayes rule. The so-
lution suggested by Diaconis (1978), and indeed supplied
by the generalized Bayes rule, is

PB(A lives | guard says B) = 0,

PB(A lives | guard says B) = 1/2.
(3.9)

This answer is a direct consequence of (3.8). As δB varies
within [0,1] without any further assumption, one is bound
to concur with (3.9). The caveat to it, however, is that
again due to prior symmetry of B and C, the generalized
Bayes rule will also yield

PB(A lives | guard says C) = 0,

PB(A lives | guard says C) = 1/2.

Hence, the generalized Bayes rule results in posterior
probability intervals strictly containing the prior proba-
bility in all situations.

Our use of the vocabulary “optimism,” “pessimism”
and “conservatism” to refer to the three updating rules is
informed by the interpretation of their respective poste-
rior inference under the effective assumptions they each
impose, and is reminiscent of that of Fygenson (2008) for
modeling of extrapolated probabilities. These ideological
differences illuminate the dynamics among the updating
rules for imprecise probability, and highlight the peda-
gogical significance of the three prisoners’ paradox itself.
In this example, Dempster’s rule updates its conditional
lower probability to be greater than that of its prior up-
per probability thus incurs sure loss of the form (3.5), the
Geometric rule behaves the opposite way and incurs sure
loss of the form (3.6), and the generalized Bayesian rule
exhibits dilation. As far as unsettling updating goes, there
seems to be no escape regardless of which rule to choose.
How on earth then do we draw a conclusion?

Reading through the literature, the dilated answer sup-
plied by the generalized Bayes rule is the most accepted
solution to the paradox. As counterintuitive as it may be,
dilation is a professed consequence of an overfitting na-
ture of the generalized Bayes rule, for the rule is inclusive
of all possibilities allowed within the ambiguous model,
to the point of simultaneously admitting assumptions that
are incommensurable with one another. As we saw pre-
viously, the upper conditional probability PB(A lives |
guard says ∗) = 1/2 is achieved under the assumption
δ∗ = 1, where ∗ can be B or C. Similarly, the lower
conditional probability PB(A lives | guard says ∗) = 0 is
achieved when δ∗ = 0. Since δC + δB = 1, δC and δB can-
not simultaneously be 0 or 1. Indeed, when one is 1 the
other must be 0. Hence the permissible value of the pair{

x = P(A lives | guard says B),

y = P(A lives | guard says C)
}
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FIG. 1. Posterior probabilities of prisoner A receiving parole given the guard’s two possible answers, as a function of the guard’s reporting bias
δB (3.7).

forms a one-dimensional curve y = 1−2x
2−3x

inside the
square [0,1/2] × [0,1/2], as depicted in Figure 1. For
a given conditioning event ∗, the generalized Bayes rule
achieves its extremes by seeking a distribution that itself
depends on ∗, namely, a condition-dependent conditional
distribution P (∗)(· | ∗), a clear case of overfitting. Under-
standing the hidden incommensurability is important for
preventing logical fallacies such as reasoning under the
(wrong) assumption that {x, y} can take any value inside
the square [0,1/2] × [0,1/2]. We will return to the three
prisoners again in Section 6.3 to discuss its inferential im-
plications. In particular, the three prisoners’ paradox is a
direct variant of the Monty Hall problem, which possesses
a clean, indisputable decision recommendation.

3.3 What’s so Unsettling About Updating Paradoxes?

In case some readers are not yet completely put off by
the unsettling updates, we would like to offer a few words
about when, as well as when not, one should find dila-
tion or sure loss unsettling. It seems to us that the attitude
toward these phenomena should depend on the way the
underlying probability model is interpreted.

Dilation is troubling when the set of probabilities is
used as a description of uncertain inference. If the prob-
ability interval is regarded as an approximation to some
underlying true probability state, akin to a confidence or
posterior interval to an estimand, knowing that the interval
will surely grow wider in the posterior is indeed counter-
productive since the goal of inference in most cases is to
tighten the interval. But in this sense, the sure loss phe-
nomenon may just be fine, since it is common to derive
disjoint yet equally valid confidence or posterior inter-
vals from the same sampling posterior distribution, with-

out violating any classic rules of probabilistic calcula-
tion.

On the other hand, as explained in Section 3.2, the
lower and upper probabilities can be taken as acceptable
prices of a gamble. Under this interpretation, any strategy
that induces sure loss is absolutely unacceptable. Yet in
this case, dilation has much less to worry about, since a
strictly wider interval in the posterior will simply exclude
the player from engaging in the called-off bet, and does
not violate coherence in a decision-theoretic sense.

With precise probabilities, to condition on an observ-
able event is to impose a restriction to the subspace de-
fined by that event. The conditioning event itself must be
measurable with respect to the original probability space.
With imprecise probabilities, not all events are measur-
able with respect to the imprecise probability model spec-
ified on the full joint space. A crucial way the updating
rules differ from one another is how they make use of
this supplied conditioning information. Therefore, for any
of the updating rules to function at all, they must build
within themselves a particular “mechanism” of imposing
the mathematical restriction specified by the observable
event, when it is not currently measurable with respect to
the set of probabilities the rule aims to update, much in
the same way as a sampling mechanism (Kish, 1965) or
missing-data mechanism (Rubin, 1976). The fact that di-
lation and sure loss cannot happen under the precise prob-
ability does not necessarily render them undesirable: the
quality of this inference hinges on the quality of the final
action they recommend. Bringing these anomalies to light
allows us to study their implications, especially those un-
familiar or unexpected, on the final action.
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4. BEHAVIOR OF UPDATING RULES: SOME
CHARACTERIZATIONS

This section presents theoretical results on the behav-
ior of the three updating rules discussed in this paper. We
begin with the intuitive ones and progress toward those
that are perhaps surprising. Unless otherwise noted, this
section assumes that P is a Choquet capacity of order 2
on �, and � = {P ∈ M : P ≥ P }, the set of probabilities
compatible with P . Recall PB, PD and PG are the condi-
tional lower probability functions according to the gener-
alized Bayes (Definition 2.5), Dempster’s (Definition 2.6)
and the Geometric rules (Definition 2.7), respectively.

4.1 Generalized Bayes Rule Cannot Contract Nor
Induce Sure Loss

LEMMA 4.1. Let B = {B1,B2, . . .} be a measurable
and denumerable partition of �. For any A ∈ B(�), we
have

inf
Bi∈B

PB(A | Bi) ≤ P (A), and

sup
Bi∈B

PB(A | Bi) ≥ P (A).

PROOF. We prove by contradiction. Assume that
infBi∈B PB(A | Bi) > P (A). For the given A, because
� is a closed set, there exists a P (A) ∈ � such that
P (A)(A) = P (A). The superscript notation reminds us
that this probability measure can vary with the choice of
A. This however does not affect the validity of applying
the total probability law under this chosen P (A), which
leads to

P(A) = P (A)(A)

=
∞∑
i=1

P (A)(A | Bi)P
(A)(Bi)

≥
∞∑
i=1

PB(A | Bi)P
(A)(Bi)

≥
∞∑
i=1

inf
Bi

PB(A | Bi)P
(A)(Bi)

>

∞∑
i=1

P(A)P (A)(Bi) = P (A),

resulting in a contradiction. The same argument applies
to the upper probability of A. If supBi∈B PB(A | Bi) <

P (A), then using P(A) = P̃ (A)(A),

P(A) ≤
∞∑
i=1

PB(A | Bi)P̃
(A)(Bi)

<

∞∑
i=1

P(A)P̃ (A)(Bi) = P (A),

and hence again a contradiction. �

A direct consequence of Lemma 4.1 is the following
thorem.

THEOREM 4.2. Let B be a denumerable and measur-
able partition of �, and � be the set of probability mea-
sures compatible with P . For any event A ∈ B(�), under
the generalized Bayes rule:

• B cannot induce sure loss in A,
• B cannot contract A.

The first part of Theorem 4.2, that the generalized
Bayes rule avoids sure loss, is well known in the literature
and is the very reason that many authors such as Walley
(1991) and Jaffray (1992) consider it to be the sole choice
as coherent updating rule, or the “conditioning proper.”
However, as we will show next, the generalized Bayes
rule is also the most prone to dilation.

4.2 Generalized Bayes Rule Dilates More

LEMMA 4.3 (Generalized Bayes rule produces the
widest intervals). For all A,B ∈ B(�) such that the fol-
lowing quantities are defined, we have

PB(A | B) ≤ PD(A | B) ≤ PD(A | B)

≤ PB(A | B)
(4.1)

and

PB(A | B) ≤ PG(A | B) ≤ PG(A | B)

≤ PB(A | B).
(4.2)

That is, the conditional probability intervals resulting
from Dempster’s rule and the Geometric rule are always
contained within those of the generalized Bayes rule. The
fact that Dempster’s rule produces shorter posterior inter-
vals than that of the generalized Bayesian rule was dis-
cussed in Dempster (1967) and Kyburg (1987). Here is a
simple proof that applies to both sharper rules.

PROOF. For Dempster’s rule, the conditional plausi-
bility function satisfies

PD(A | B) = supP∈� P(A ∩ B)

supP∈� P(B)
≤ sup

P∈�

P(A ∩ B)

P (B)

= PB(A | B)

and by conjugacy, also PD(A | B) ≥ PB(A | B). Simi-
larly for the Geometric rule, the conditional lower proba-
bility function satisfies

PG(A | B) = infP∈� P(A ∩ B)

infP∈� P(B)
≥ inf

P∈�

P(A ∩ B)

P (B)

= PB(A | B)

and by conjugacy, also PG(A | B) ≤ PB(A | B). �
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THEOREM 4.4 (Generalized Bayes rule dilates more).
Let B ∈ B(�) be such that P(B) > 0. Denote sets of pos-
terior probability measures �B = {P : P ≥ PB(· | B)},
�D = {P : P ≥ PD(· | B)} and �G = {P : P ≥ PG(· |
B)}. Then

(4.3) �G ⊆ �B and �D ⊆ �B.

Theorem 4.4 is a direct consequence of Lemma 4.3,
noting that �G, �B and �D are all convex and closed.
Two more consequences of Lemma 4.3 are stated below,
of which Examples 3 and 5 are respective embodiments.

COROLLARY 4.5. If B incurs sure loss in A under
Dempster’s rule and sure gain under the Geometric rule,
or vice versa, then B strictly dilates A under generalized
Bayesian rule.

COROLLARY 4.6. If B (strictly) dilates A under
either Dempster’s rule or the Geometric rule, then B
(strictly) dilates A under generalized Bayesian rule.

Theorem 2.1 of Seidenfeld and Wasserman (1993)
stated that, if dilation occurs with the generalized Bayes
rule, the associated set of probabilities � has a nonempty
intersection with that of the independence plane between
A and B . Thus following Corollary 4.6, we have the fol-
lowing.

COROLLARY 4.7. If B = {B,Bc} dilates A under ei-
ther Dempster’s rule or the Geometric rule, then there ex-
ists P ∗ ≥ P such that

(4.4) P ∗(A ∩ B) = P ∗(A)P ∗(B).

That is, dilation of an event by a binary partition under
either Dempster’s or the Geometric rules is a necessary
condition for the posited set of probabilities to postulate
event independence, since posterior intervals under both
rules are contained within the generalized Bayes posterior
interval.

4.3 Generalized Bayes Rule and Geometric Rule
Cannot Sharpen Vacuous Prior Intervals

THEOREM 4.8 (Sharpening of vacuous intervals). Let
P be such that for the event A ∈ B(�), P(A) = 0,
P(A) = 1. For any B ∈ B(�) such that P(B) > 0, we
have

(4.5) PG(A | B) = 0, PG(A | B) = 1

and

(4.6) PB(A | B) = 0, PB(A | B) = 1.

PROOF. If P(A) = 0 and P(A) = 1, then P (A∩B) =
P(Ac ∩ B) = 0 for any B . Therefore, by (2.9) we have

PG(A | B) = P (A ∩ B)/P (B) = 0

and PG(A | B) = 1 − PG(Ac | B) = 1, provided that the
denominator is greater than zero. Furthermore, by (4.1)

we have PB(A | B) ≤ PG(A | B) = 0 and PB(A | B) ≥
PG(A | B) = 1. �

The liberty to express partially lacking, and vacuous,
prior knowledge is a prized advantage of imprecise prob-
ability over their precise, or full Bayesian, counterparts.
Theorem 4.8 shows that both the generalized Bayes rule
and Geometric rule are incapable of revising a vacuous
prior interval to something informative for any possible
outcome in the event space, whereas Dempster’s rule is
capable of such revision, with Example 1 being an in-
stance. This again highlights the nonnegligible influence
imposed by the rule itself, as well as the difficulty to de-
liver all desirable properties in one single rule. Avoiding
sure loss and being able to update from complete igno-
rance both seem to be rather basic requirements, but to in-
sist on both is sufficient to eliminate all three rules studied
here. The following result perhaps is even more disturb-
ing, because it says that in the world of imprecise proba-
bilities, not only must we live with imperfections, but also
accept intrinsic contradictions.

4.4 The Counteractions of Dempster’s Rule and
Geometric Rule

THEOREM 4.9. If B = {B,Bc} dilates A under the
Geometric rule, then it must contract A under Demp-
ster’s rule. Similarly, if B dilates A under Dempster’s
rule, then it must contract A under the Geometric rule.
In both cases, the contraction is strict if the correspond-
ing dilation is strict.

PROOF. If B strictly dilates A under the Geometric
rule, then for either Z ∈ B

PG(A | Z) = P (A ∩ Z)

P (Z)
< P(A),(4.7)

PG(A | Z) = P (A ∪ Zc) − P(Zc)

P (Z)
> P(A).(4.8)

It follows then

PD(A | B)

P (A)
= P(A ∩ B)

P (A) · P(B)

= P(A ∩ B)

P (A) · (1 − P(Bc))

<
P (A ∩ B)

P (A) · [1 − (P (A ∪ B) − P (B))/P (A)]

= P (A ∩ B)

P (A) + P (B) − P (A ∪ B)
≤ 1,

where the first inequality follows from (4.8) with Z = Bc,
and the second inequality is based on the 2-alternating na-
ture of P . (The 2-alternating nature was also implicitly
used in the first inequality to ensure P (A ∪ B) − P(B) <
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P(A), hence the positivity of the denominator after re-
placing P (Bc) with an upper bound.) In a similar vein,

PD(A | B)

P (A)
= P (B) − P (Ac ∩ B)

P (B) · P(A)

= P (A ∪ Bc) − P(Bc)

P (B) · P(A)

≥ P(A) − P (A ∩ Bc)

(1 − P(Bc)) · P (A)

= P (A) − P (A ∩ Bc)

P (A) − P(Bc) · P(A)
> 1,

where the first inequality uses the 2-monotone nature of
P and the second inequality is based on (4.7) with Z = B .
Thus we have PD(A | B) < P(A) and PD(A | B) >

P(A), and clearly both inequalities still hold when we re-
place B by Bc because (4.7)–(4.8) hold for both Z = B

and Z = Bc. Consequently, B strictly contracts A under
Dempster’s rule. If B dilates A under the Geometric rule
but not strictly, the inequality in either (4.7) or (4.8), but
not both, may hold with equality, hence B contracts A un-
der Dempster’s rule but not strictly. This completes the
proof for the first half of the statement.

For the second half, when B strictly dilates A under
Dempster’s rule, we have for any Z ∈ B,

PD(A | Z) = P(A ∩ Z)

P (Z)
> P (A),

PD(A | Z) = P(A ∪ Zc) − P (Zc)

P (Z)
< P (A).

Noting both inequalities hold for Z and Zc, we have

1 >
P(A ∪ Z) − P (Z)

P (A) · P(Zc)
≥ P (A) − P (A ∩ Z)

P (A) − P(A) · P (Z)
.

Hence P (A) < P(A ∩ Z)/P (Z) = PG(A | Z). On the
other hand,

1 <
P(A ∩ Zc)

P (A) · P (Zc)
≤ P(A) − (P (A ∪ Zc) − P (Zc))

P (A) − P (A) · P (Z)
.

Hence P(A) > (P (A ∪ Zc) − P(Zc))/P (Z) = PG(A |
Z). The same argument applies that if B dilates A under
Dempster’s rule but not strictly, it contracts A under the
Geometric rule but not strictly. This completes the proof
for the second half of the statement. �
4.5 Visualizing Relationships and Complications

EXAMPLE 5 (Pre-election poll). Suppose that we in-
tend to study the voter intention prior to the 2016 US elec-
tion. For simplicity, assume there are only two parties,
represented respectively by Clinton and Trump, with one
to be elected. The preelection poll consists of two ques-
tions:

TABLE 3
Hypothetical data from a voter poll consisting of two questions

Q1 C T C T C T (n/a) (n/a) (n/a)
Q2 Dem Dem Rep Rep (n/a) (n/a) Dem Rep (n/a)
m(·) 0.1 − ε 0.2 + 8ε

1. Do you intend to vote for Trump or Clinton?
2. Do you identify more as a Republican or a Demo-

crat?

Among all surveyed individuals, some answered both
questions, some only one, and the rest did not respond.
Let Q1 = {Trump,Clinton} denote votes for Trump and
Clinton, respectively, and Q2 = {Republican,Democrat}
denote identification with the Republican and Democratic
parties, respectively. If all the percentages of response pat-
terns are fully known, this model can be represented as a
belief function. Assume the mass function m(·) reflecting
the coarsened sampling distribution for these set-valued
observations appears as Table 3 (of course, the numbers
are for illustrations only).

A “tuning parameter” ε ∈ [−0.025,0.1] is installed to
create a family of mass function specifications in order to
investigate the differential behavior among updating rules
as a function of the coarseness of the data. The smaller
the ε, the more the mass function concentrates on the pre-
cise observations (more survey questions answered). The
larger the ε, the closer the random set approaches the vac-
uous belief function. As a function of ε, the prior lower
and upper probabilities for Clinton are

P(C) = 0.3 − 3ε, P (C) = 0.7 + 3ε.

The prior lower and upper probabilities for Trump, as well
as for identification of either parties are numerically iden-
tical to the above, since the setup is fully symmetric with
respect to both voting intention and partisanship. For ex-
ample, when ε = 0, the table above shows that altogether
40% of the respondents diligently answered both ques-
tions, 20% only identified prior partisanship, 20% only
expressed current voting intentions, and another 20% did
not respond at all. Thus, m(·) determines a pair of belief
and plausibility functions which bounds the vote share for
both Clinton and Trump to be within 30% and 70%.

How will information on partisanship affect the knowl-
edge on voting intention? According to the three updating
rules, the lower and upper probabilities for Clinton condi-
tional on either values of partisanship Q2, are as follows:

PB(C | Q2) = 0.1 − ε

0.6 + 4ε
, PB(C | Q2) = 0.5 + 5ε

0.6 + 4ε
,

PD(C | Q2) = 0.2 − 2ε

0.7 + 3ε
, PD(C | Q2) = 0.5 + 5ε

0.7 + 3ε
,

PG(C | Q2) = 1

3
, PG(C | Q2) = 2

3
.
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FIG. 2. Prior probability interval for Clinton’s voter support (black) and posterior probability intervals given reported partisanship according
to the three updating rules (blue: generalized Bayes, red: Dempster’s, green: Geometric). Due to full symmetry of the setup, contraction happens
under an updating rule whenever the corresponding posterior interval depicted is contained within the prior interval; vice versa for dilation.

See Figure 2 for the above quantities as functions of ε.
We observe that:

• Under the generalized Bayes rule, knowledge about
partisanship strictly dilates voting intention for either
candidate for all ε < 0.1. That is to say, learning the
prior partisanship of an individual dilates our inference
of her current voting intention, and vice versa, and this
is true no matter which party or candidate is said to be
favored;

• Under Dempster’s rule, partisanship strictly dilates vot-
ing intention for either candidate for −0.011 < ε < 0.1,
and strictly contracts both for −0.025 < ε < −0.011;

• Under the Geometric rule, partisanship strictly dilates
voting intention for either candidate for −0.025 < ε <

−0.011, and strictly contracts both for −0.011 < ε <

0.1. Moreover, the absolute value of the lower and up-
per posterior probability remained constant regardless
of the value of ε.

Furthermore, we observe some of the phenomena dis-
cussed previously in this section. For example, the extent
of dilation exhibited by the generalized Bayes rule is to
a strictly larger extent than that of both Dempster’s rule
and the Geometric rule, if either of them does dilate. The
dilation-contraction status of Dempster’s rule and the Ge-
ometric rule are in full opposition to each other, switching
precisely at ε = −0.011.

5. SIMPSON’S PARADOX: AN IMPRECISE MODEL
WITH AGGREGATION SURE LOSS

One may well think that all examples discussed so far
lie on the boundary, if not outside, of the realm of main-
stream statistical modeling. Imprecise models are not the

kind of thing one just stumbles upon, they exist by inten-
tional construction. We argue that such is not the case, that
all precise models are really just the tip of an “imprecise
model iceberg.” Every precise model is a fully specified
margin nested within a larger, ever-augmentable model,
with extended features not allowed to enter the scene as
the modeler lacks the knowledge to do so precisely.

Here is a concrete way to induce an imprecise model
from a precise one. Take a precise model with the state
space (X1, . . . ,Xp) that merits a known multivariate dis-
tribution. If we expand the model to include a previ-
ously unobservable margin Xp+1, the state space be-
comes (p + 1)-dimensional, and the augmented model
becomes imprecise. As many as 2p − 1 new marginal
relationships—between Xp+1 and any nonempty subset
of (X1, . . . ,Xp)—are left to be specified or learned. In
the regression setting where a multivariate Normal model
is assumed for the previous p variables, one seemingly
straightforward way is to model (X1, . . . ,Xp,Xp+1) as
jointly Normal. This is a very strong assumption that takes
care of all the new joint relationships. Even under such
drastic simplification, the new mean and the new bivariate
covariances are still left to specify, resulting in a family of
(p + 1)-dimensional Normal models.

In reality, the relationship between the existing state
space and a new margin is often something about which
the analyst is neither knowledgeable nor comfortable
making assumptions. This is the case in observational
studies, where Xp+1 is a lurking variable which may have
strong collinearity with subsets of the observed variables
(X1, . . . ,Xp). Using the language of imprecise probabil-
ity, we now turn to decipher Simpson’s paradox, a famous
and familiar setting with its far-reaching significance. The
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occurrence of Simpson’s paradox is proof that we have
employed, likely due to lack of control, an aggregation
rule that has incurred sure loss in inference.

EXAMPLE 4 CONT. (Simpson’s paradox). Following
the setup in Section 1, Simpson’s paradox refers to an ap-
parent contradiction between an inference on treatment
efficacy at an aggregated level, p̄obs < q̄obs, and the infer-
ence at the disaggregated level when the covariate type
of the patient has been accounted for: pk > qk for all
k = 1, . . . ,K . Indeed, how can a treatment be superior
than its alternative in every possible way, yet be inferior
overall?

5.1 Explicating the Aggregation Rules Underlying the
Simpson’s Paradox

Denote for k = 1, . . . ,K ,

uk = P(U = k | Z = 1), vk = P(U = k | Z = 0).

Here, u and v reflect the demographic distribution of the
populations receiving the experimental and control treat-
ments, respectively. By the law of total probability,

(5.1) p̄ = p�u and q̄ = q�v,

thus given fixed p and q, p̄ and q̄ are functions of u
and v, respectively. The marginal probabilities p̄ and q̄

are meant to describe an event under conditions of infer-
ential interest, in this case, patient recovery within the two
treatment arms. We refer to u and v as aggregation rules,
functions that map conditional probabilities to a marginal
probability. Aggregation rules point in reverse direction
as do updating rules as discussed in the previous sections,
which are maps from a marginal probability to a set of
conditional probabilities.

Typically, measurements between different conditions
are made for the purpose of a comparison, such as the
evaluation of an causal effect of treatment Z on outcome
Y . A comparison between p̄ and q̄ is fair if and only if the
aggregation rules they employ are identical, that is, u = v
as in (5.1). This is what it means to say the comparison has
been made between apples and apples. Such is the case if
no confounding exists between the covariate U and the
propensity of assignment, that is, U ⊥ Z.

Clearly, when u = v, p̄ > q̄ if pk > qk for all k. Hence
Simpson’s paradox is mathematically impossible within a
fair comparison. However, for a given observed pair p̄obs
and q̄obs, have we been careful enough to enforce the de
facto aggregation rules to equal the ideal one? That is, do
we have that the observed comparison is fair enough, that
is, a common rule v such that approximately,

(5.2) uobs
.= v and vobs

.= v?

For certain values of p and q, it is entirely possible
that suitable realizations of (uobs,vobs) could result in

p̄obs < q̄obs. To be exact, these are p and q values satis-
fying maxk qk > mink pk . At least one, and possibly both
realizations of uobs and vobs play differentially to the rela-
tive weaknesses of p, that is, coordinates of smaller mag-
nitude, and the strengths of q accordingly. When this pref-
erential weighting, also known as confounding, is strong
enough to reverse the perceived stochastic dominance of
the outcome variable under either treatment, an appar-
ent paradox is induced. Randomization procedures effec-
tively put quality guarantees on the fairness of compari-
son; as the sample size n grows larger, (5.2) holds with
high probability with deviations quantifiable with respect
to p and q that is immune against all U , observed or un-
observed.

5.2 The Paradox Is Sure Loss

Simpson’s paradox is reminiscent of the “sure loss”
phenomenon we saw in earlier sections. Indeed, when not
conditioned on U , if asked to pick a bet between the ex-
perimental and control treatments, we would prefer the
control treatment over the experimental one. But once
conditioned on U , the experimental treatment suddenly
became the superior bet regardless of U ’s value. One is
thus set to surely lose money by engaging in a combina-
tion of these two bets. This is formalized by the following
theorem, where SK is the standard K-simplex defined by
{(v1, . . . , vK) : ∑K

k=1 vk = 1;vk ≥ 0, k = 1, . . . ,K}.
THEOREM 5.1 (Equivalence of Simpson’s paradox and

aggregation sure loss). Let � be a convex hull in [0,1]K
characterized by the pair of elementwise upper and lower
bounds (p,q). That is,

� = {
λ ∈ [0,1]K : qk ≤ λk ≤ pk, k = 1, . . . ,K

}
.

Let V ⊆ SK be a closed set of aggregation rules, and u ∈
SK . Then u incurs sure loss on � relative to V if and only
if (u,v) induces Simpson’s paradox in (p,q) for all v ∈ V .

PROOF. Denote the set of marginal probability de-
rived from � under the set of aggregation rules V as
PV = {λ�v : λ ∈ �,v ∈ V}. By the closeness of both �

and V , we have

(5.3) infPV = inf
v∈V q�v and supPV = sup

v∈V
p�v,

and

(5.4) p�u = sup
λ∈�

λ�u and q�u = inf
λ∈�

λ�u.

Employing Definition 3.3, to say that u incurs sure loss
on � relative to V means that

(5.5) sup
λ∈�

λ�u < infPV or inf
λ∈�

λ�u > supPV .

On the other hand, to say that for every v ∈ V , (u,v) in-
duces Simpson’s paradox in (p,q) means that

(5.6) p�u < inf
v∈V q�v or q�u > sup

v∈V
p�v.
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FIG. 3. Ideal aggregating rules guarantee the comparison between treatment arms is made on a fair ground. Observed Simpson’s paradox is
strong evidence that the de facto aggregating rules are fair for comparison. Left: if pk > qk for all k, then p�v > q�v for all v; Right: disparate
uobs and vobs make possible pobs < qobs. Note that � in Theorem 5.1 is the convex hull sandwiched between the blue (p) and red (q) hyperplanes
in the first octant.

Identities (5.3)–(5.4) trivially imply the equivalence be-
tween (5.5) and (5.6). �

We remark that, in Definition 3.3, sure loss is defined
with respect to a single conditioning rule because the
prior/marginal lower and upper probabilities P and P are
treated as given. Such is not the case with the sure loss
concept in Theorem 5.1. We must first define V , a set
of aggregation rules deemed desirable for the purpose of
the study. V implies a prior/marginal probability interval,
only relative to which the behavior of the other aggrega-
tion rule u can be discussed. One can check that the rela-
tionship between u and v is reciprocal, that is, if u induces
sure loss relative to v, then v induces sure loss relative
to u. Thus, we can talk about an aggregation scheme as
an ordered pair of rules (u,v), and its characteristics as
whether it incurs sure loss relative to itself, whether it in-
duces the paradox in (p,q), and so on.

A connection between Simpson’s paradox and the
atomic lower and upper probability (ALUP) model of
Herron, Seidenfeld and Wasserman (1997) is made be-
low. A set of probabilities �(p,q) is an ALUP generated
by (p,q) ∈ [0,1]2K , if

(5.7) �(p,q) = {π ∈ SK : supπk = pk, infπk = qk}
LEMMA 5.2 (ALUP models). If an aggregation

scheme (u,v) induces Simpson’s paradox in (p,q), it in-
curs sure loss relative to itself on the ALUP model �(p,q)

as defined in (5.7).

PROOF. Without loss of generality, suppose an aggre-
gation scheme (u,v) induces Simpson’s paradox in (p,q)

in the form of p�u = supλ∈� λ�u < infλ∈� λ�v = q�v.
But since �(p,q) is a closed and convex subset of �, we
have supλ∈� λ�u ≥ supπ∈�(p,q)

π�u and infλ∈� λ�v ≤
infπ∈�(p,q)

π�v, hence the “only if” part of Theorem 5.1
still holds. �

5.3 Implication on Inference

In Example 4, the description of the model is pre-
cise with the conditional values p and q, as well as the
marginal values p̄obs and q̄obs. The model is imprecise,
and in fact completely vacuous, on the aggregation rules
(uobs,vobs) which gave rise to the observed marginal val-
ues.

In order for the observed marginal probabilities p̄obs
and q̄obs to yield a meaningful comparison, we must have
clear answers to the following two questions regarding
uobs and vobs:

1. Are they equal?
2. What is the mutual value v they both should be equal

to?

An affirmative answer to the first question ensures that
p̄obs and q̄obs are at least on a comparable footing. For
example, for the evaluation of an causal effect of Z on
Y , regardless of the population of interest, it must be en-
sured that no confounding between the covariate U and
the propensity of assignment took place, that is, U ⊥ Z.
That is why Simpson’s paradox is a sanity check for any
apparent causal relationship, as the paradox constitutes
sufficient (but not necessary) evidence there is nonneg-
ligible confounding between U and Z, a telltale sign that
one is comparing apples with oranges.

Much classic and contemporary literature on causal in-
ference sensitivity analysis, for example, Cornfield et al.
(1959), Ding and VanderWeele (2016), hinge on estab-
lishing deterministic bounds to exclude scenarios that
are in essence Simpson’s paradoxes, as well as quanti-
fying the probability of population-level paradox given
observed paradox in the sample, for example, Pavlides
and Perlman (2009). If the assignment Z cannot be con-
trolled in one or both treatment arms, the aggregation rule
is no longer chosen by the investigator but rather left self-
selected, in all or in part by the observational mechanism.
In particular, if arbitrary confounding can be present in
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both treatment arms, u and v can take up any value in SK .
It is also entirely possible that controlled randomization or
weighting is available in only one of the treatment arms,
or on a subset of levels of U , reflecting an aggregation
rule as a mixture of intentional choice and self-selection.

It is also crucial that the ideal aggregation rule v, the
mutual value for uobs and vobs, is a conscious choice made
to reflect the scientific question of interest. Two typical
situations that give rise to natural choices of v are:

• to infer about population average treatment effect,
choose v to be the oracle probability distribution of
patients’ covariates in the population;

• to make inference about a particular patient’s treatment
effect, choose v = (0 · · · 0 1(Ui=k) 0 · · · 0)�, the indi-
cator vector matching the patient’s covariate value Ui

with its level k.

One can devise a range of choices of v to reflect any
amount of intermediate pooling within what is deemed as
the relevant subpopulation. As discussed in Liu and Meng
(2014, 2016), what defines the game of individualized in-
ference is picking the v at the appropriate resolution level
while subject to the tradeoff between population relevance
and estimation robustness.

Choosing the right v and enforcing uobs = vobs = v is
not merely a mathematical decision on paper, but rather
entails action in a real-life observational environment, one
that likely involves the physical activities of stratification
and randomization such as controlled experiments and
survey designs. Only through doing so can we make sure
the de facto aggregation rules are equal to the ideal rule,
or equivalently that we know executable ways to adjust
for the differences between these quantities, for example,
through retrospective weighting. Failure to acknowledge
the distinction and potential differences among v, uobs,
and vobs paves the way not only for Simpson’s paradox,
but also equivalently for endorsing mythical statistical ag-
gregation rules with the potential to exhibit incoherent be-
havior, and the worst of all, to mislead ourselves in mak-
ing the wrong treatment or policy decisions, a sure loss in
a real sense.

6. FOOD FOR THOUGHT

6.1 Imprecise Models: Extended Expressions of
Uncertainty

When more information is observed, we expect the
variability associated with the inferential target to de-
crease. This property is possessed by many trustworthy
Bayesian and frequentist procedures relying on precise
model structures. Those that bring the most variability
reduction for unit increase of observed information are
praised as statistically efficient.

However, efficiency is only desirable if we are ab-
solutely sure that information is utilized in the correct

way. The ability of an efficient method to distinguish be-
tween useful and harmful variations in the data is supplied
by the assumption underlying the model. These assump-
tions are sometimes made out of convenience, and some-
times out of the limited expressions of uncertainty that
precise statistical models permit. Balch, Martin and Fer-
son (2019) observed the paradox of probability dilution:
lower quality tracking data, when expressed via a sam-
pling model with inflated variance, apparently increases
the confidence in the inference that two satellites would
not collide. The uncertainty about data acquisition got co-
erced into a precise piece of modeling assumption, which
backfires and brings misleading precision in inference.

Probabilistic modeling is not all about convergence.
A responsible modeler certainly would like to know if she
does not actually have the right means to converge to the
truth. She would like to articulate uncertainty about the
state of knowledge, without conflating it with sampling
variability which will go away as data accumulate. If ad-
ditional data do not carry information beneficial with re-
spect to the current state of knowledge, a truly intelligent
model ought to refuse to further reduce inferential vari-
ability based on these data, such that additional data will
do no harm.

Even within the realm of precise models, “doing no
harm” is a requirement that can be easily violated when
the model is misspecified. As demonstrated in Meng and
Xie (2014), more data do not automatically lead to nar-
rower confidence intervals even in ordinary least squares
(OLS) regression. If a homogeneous variance model is ap-
plied to data with heteroskedasticity, the naturally equally
weighted OLS de-facto gives observations with larger
noise more weight than they deserve. The width of the
confidence interval can increase, sometimes substantially,
with the size of our data. Indeed, a heteroskedastic regres-
sion model without knowledge of how the heteroskedas-
ticity arises cannot teach itself to weight a new data point
without mixing signal with noise, an obvious reflection of
an inherent structural deficiency in the model.

Equipped with such intuition, it becomes natural to
view dilation and other anomalies with imprecise mod-
els not as annoying bugs, but rather helpful warning
signs. They reflect a genuine, structural kind of uncer-
tainty about the underlying set of probabilistic models
employed. The upper and lower probability intervals, be
they prior or posterior, marginal or conditional, do not
merely measure the lack of information from pinning
down the inferential target. They also reflect the incom-
plete knowledge on the modeler’s part, from knowing
even how to measure such lack of information. These un-
settling phenomena are all symptoms when the inherent
incompleteness of modeling knowledge gets in the way of
learning more about the inference question. That is when
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observations, which normally would bring in more infor-
mation, may just become points of additional confusion,
if we do not recognize their diagnostic values.

As discussed in Section 1, association characterizes
how probability about one thing should change after
another thing has been learned. It is the fundamental
means through which observed information contribute to
a model. The sign of the association gives the sense of
direction, such as seen from the coefficients in regres-
sion models. The magnitude of the association implies
an order of priority, such as in large scale genome-wide
association studies and elsewhere where correlation coef-
ficients are used as test statistics. Plentiful association is
the indication of signal strength, potential discovery and
the prospect of a causal relationship. The absence of asso-
ciation, on the other hand, is just as desirable when used
to justify independence assumptions, creating a blanket
of simplicity on which small-world models can be built
and trusted. The three types of associations (positive, neg-
ative and independence) correspond to the three possible
directions of change as the probability of an event updates
from the prior to the posterior according to the Bayes rule.
In precise probabilities, these three types of associations
exhaust all possibilities of information contribution from
one event to another.

Imprecise models expand the landscape of informa-
tion contribution, because the probabilistic description as-
signed to each event is no longer singular. The upper
and lower probabilities considered in this paper deliver
a closed interval [P (A),P (A)] of possibly nonnegligible
width. Generalized notions of association and indepen-
dence, which characterize the direction of change from
prior to posterior, are yet to be defined for sets of prob-
abilities. Phenomena like dilation, contraction and sure
loss explored in this paper are hinting at novel types of
information contribution, as model uncertainty revealed
through them can be particularly informative and wel-
come. The ability to send this message is a unique and
powerful feature of imprecise models, as well as those
that utilize nonadditive measures (Balch, Martin and Fer-
son, 2019).

6.2 Assumption Incommensurability and
Conditioning Protocol

As revealed in Section 3.3, each imprecise probability
updating rule is constantly faced with the problem that
the conditioning information may not be measurable with
respect to the very imprecise probability it is trying to up-
date. As a consequence, they each effectively build within
themselves a mechanism for imposing mathematical re-
strictions generated by a given event B . This is why, as
far as we can see, the situation in the world of impre-
cise probability is more confusing and clearer at the same
time. It is more confusing because the notation P • and

P • carry meanings contingent upon the •-rule we choose.
Yet, different rules are built upon different mechanisms
for imposing the mathematical restriction specified by an
event partition B, in a much similar vein to the sampling
and missing data mechanisms mentioned previously, po-
tentially supplying a variety of options suitable for differ-
ent situations that users may choose from, as long as they
are well informed of the implied assumptions of each rule.
In this sense, the situation is clearer, because the impre-
cise nature should compel the users to be explicit about
the imposed mechanisms in order to proceed. Below we
illustrate this point.

EXAMPLE 2 CONT. (The boxer, the wrestler and the
God’s coin). Recall the boxer and wrestler example in
which there exists a priori, a fair coin and vacuous knowl-
edge of the two fighters. Our analysis in Section 3 showed
that upon knowing X = Y , Dempster’s rule will judge
the posterior probability of boxer’s win to be precisely
half, whereas generalized Bayes rule will remain that the
chance is anywhere within [0,1]. We realize that the wit-
ness who relayed the message X = Y could have meant it
in (at least) two different ways:

1. that he happened to see both the coin flip and the
match between the two fighters, and the results of the two
events were identical;

2. that he somehow miraculously knew that the coin
toss decides the outcome of the match, as if the coin is
God’s pseudorandom number generator.

If the first meaning is taken, as most of us naturally do,
it seems that the generalized Bayes answer makes sense.
After all, since we do not know the relationship between
two co-observed phenomenon, the worst case scenario
would be to admit all possibilities, including the most ex-
treme forms of dependence, when deriving the probability
interval.

However, if the head of the coin dictates the triumph
of the boxer, and the former event is known precisely as a
toss-up, it makes sense to think of the match as a true toss-
up as well. In this case, it is rightful to call for a transferral
of the a priori precise probability of X onto the a priori
vacuous Y . The same logic would apply had we been told
X �= Y , in the sense that the head of the coin dictates the
triumph of the wrestler. In both cases, the update is akin to
adding another piece of structural knowledge to the model
itself.

This example reflects a point made by Shafer (1985).
In order for probabilistic conditioning to be properly in-
terpreted, it is crucial to have a “protocol” specifying what
information can be learned, in addition to learning the ac-
tual information itself. Updating in absence of a protocol,
or more dangerously under an unacknowledged, implicit
protocol, can produce complications to the interpretation
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of the output inference. Dilation and sure loss, phenomena
exclusive to imprecise probability, are striking instances
that demonstrate such danger. Discrepancies among the
three updating rules reflect the different ways the same
incoming message might be interpreted. Each condition-
ing rule effectively creates a world of alternative possible
observations, hence a protocol is de facto in place, only
hidden behind these explicit-looking rules.

When performing updates in the boxer and wrestler’s
case, the distinction between conditioning protocols un-
derlying the solutions we have offered so far is one be-
tween factual versus incidental knowledge spaces. Know-
ing X = Y is a possible outcome and by chance observing
it constitutes incidental knowledge. Knowing that X = Y

is the factual state of the nature is knowledge of a funda-
mentally different type, one that is much more restrictive
and powerful at the same time: in other words, X �= Y can-
not, could not and will not happen. Unlike their incidental
counterparts, claiming either X = Y or X �= Y as factual
necessarily makes them incommensurable with one an-
other, even over sampling repetitions. That is to say, if ei-
ther X = Y or X �= Y are to be hard-coded into the model,
they will each result in a model distinct from the other in
a way that their respective posterior judgments about the
same event, say Y = 1, are not meant to enter the same
law of total probability calculation. If we are willing to
admit either X = Y or X �= Y as factual evidence to con-
dition on, they can no longer be regarded as a partition of
the full space like they did back in Section 3.1; the model
must also anticipate to deal with a whole range of other
possible relationships between X and Y that are nondeter-
ministic, as part of the conditioning protocol in Shafer’s
sense.

The distinction between factual versus incidental
knowledge updating are referred to as revision versus
focusing in the imprecise probability literature, and re-
flect the ideologies behind the updating rules; see Smets
(1991), Miranda and Montes (2015) for more on the mat-
ter. Whether a rule is applicable to a particular impre-
cise model would consequently depend on a judgment
of knowledge type, as well as what questions we want to
answer. Within a precise modeling framework, the knowl-
edge type for conditioning is typically coded into the con-
ditioning event itself, which might be on an enhanced
probabilistic space but without increasing the resolution
of the original (marginal) model because it is already at
the highest possible resolution. Hence, one universal up-
dating rule is sufficient. Under an imprecise model, such
a resolution-preserving encoding may not be possible be-
cause of the low resolution nature of the original model.
Various rules then have been and will be invented to carry
out the update as a qualitative rescue for the model’s in-
ability to quantify the knowledge types within its original
resolution. This makes the judgment of knowledge types

particularly pronounced, and serves as a reminder of the
precise nature of the conditioning operation in statistical
learning. If the applicability and subtitles of each updat-
ing rule is not explicated, the resulting inference is subject
to increased vulnerability and confusion, even leading to
paradoxical phenomena such as studied in this paper.

6.3 Imprecise Probability, Precise Decisions

Seeing a myriad of sensible and nonsensible answers
produced by the updating rules of imprecise models, one
may wonder if anything certain, or close to certain, can
be inferred from these models at all without stirring up
a controversy. To this end, we discuss a final twist to the
three prisoners’ story.

EXAMPLE 3 CONT. (Three prisoners’ Monty Hall).
Having heard from the guard that B will not receive pa-
role, prisoner A is presented with an option to switch his
identity with prisoner C: that is, the next morning A will
be met with the fate of C (and C that of A), both having
been decided unbeknownst to them. Is this a good idea for
A?

The answer is unequivocally yes. The above is a recast
of the Monty Hall problem in which you, the contestant
standing in front of a randomly chosen door (prisoner A),
have just been shown a door with a goat behind it (“B
will be executed”), and are contemplating a switch to the
other unopened door (the identity of prisoner C) for a bet-
ter chance of winning the new car (parole). By the calcu-
lations in (3.9), we know that under the generalized Bayes
rule

PB(A lives | guard says B)

= PB(C lives | guard says B),

suggesting that a switch will under no circumstances hurt
the chance of A’s survival. Without switching, A’s best
chance of surviving does not exceed C’s worst chance of
living. Moreover, as the most conservative rule of all, the
(almost) separation of the two generalized Bayes poste-
rior probability intervals guarantees the same for the other
updating rules as well. Therefore, the action of identity
switching should be recommended to A without reser-
vation, regardless of the choice of rule among the three
discussed. (Without changing the problem setup, it is es-
sentially disallowed for more than one prisoner to inquire
with the guard, either independently or simultaneously.
Thus we never have to recommend identity switching to
more than one prisoner, which would otherwise create a
different paradox.) The unanimity in decision is due to
the (very) low resolution nature of the action space, often
binary (e.g., switching or not), allowing different high-
resolution probabilistic statements to admit the same low
resolution classification in the action space.
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