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We’ve all been there: your airline company 
emails you and asks your opinion about 
their service. Still bummed out about last 
summer when they almost lost your lug-
gage, you take up the invitation hoping to 
rant about it, only to find out three pages 
into the survey they want to know how old 
you are and what you do for a living.

Deep down inside, you know that 
telling the truth may eventually help the 
airline company understand your needs as a 
budding academic. In the summer months, 
we fly from conference to conference living 
out of a suitcase, and parting ways with it 
for even a single day will throw our talks, 
meetings, and travel plans into havoc. But 
still, that doesn’t feel reason enough to 
warrant an all-out confession. Even if telling 
the truth may potentially do you (and your 
fellow academics) a big favor, it’s not worth 
the risk to expose your most personal infor-
mation. After all, who can guarantee what 
I put into the survey will be used solely for 
the betterment of my or others’ experience, 
and never against my rights – to anonymity, 
confidentiality, and privacy? So, you put 
down some made-up age and occupation in 
the answer box, and quickly move on.

When it comes to surveys, the feeling of 
distrust that a respondent harbors against 
the surveyor corrodes the quality of the 
data. To refuse participation biases the 
survey at the sampling stage, and erroneous 
answers further harms data informativeness. 
In marketing surveys, faults like this at 
most render a company clueless about the 
true opinions of its customers. Yet grievous 
consequences await when distrust imbues 

surveys of more substantial significance. 
In just about a month, the 2020 U.S. 
decennial Census, the most comprehensive 
enumeration of the living population of 
America, will hit the ground running. As 
mandated by the U.S. Constitution, data 
obtained through the Census supply crucial 
factual evidence to economic and policy 
decisions. The Census serves as the basis 
for the apportionment of House seats, as 
well as the allocation of federal funding and 
resources (Sullivan, 2020). It is a massive 
and serious statistical undertaking.

The Census differs from all other sur-
veys in one important aspect. By design, it 
should cover 100% of its target population, 
that is every single person living in the 
United States at the time it takes place. 
Therefore, when it comes to Census data 
releases, privacy protection carries insur-
mountable significance due to the sheer 
number of respondents involved. The 2020 
Census made a revolutionary step forward 
by endorsing a new, and formal, standard 
for privacy protection, called differential 
privacy (Dwork et al., 2006; Abowd, 
2018). Differential privacy draws a sharp 
distinction from the heuristic approach to 
privacy protection that traditional methods 
typically follow, such as full and partial 
suppression of data tables and swapping 
of individuals. It supplies a mathematical 
definition on what is meant by the privacy 
of data releases, which doubles as a metric 
to quantify the amount of privacy the data 
release gives away at most.

How does differential privacy work? 
Suppose that you’re filling out the Census 

questionnaire, and let’s denote your true 
answer as xt. You are reminded of the 
risk of a hypothetical privacy breach, and 
contemplate whether to put down instead 
a fabricated answer, say xf. Your answer, 
together with billions of others’, constitute 
the enormous Census database D, which 
takes the value D(xt) if you supplied the 
true answer, or D(xf) if the fabricated one. 
(Let’s say the others’ answers, whether true 
or fabricated, are identical in D(xt) and 
D(xf).) Finally, the Census Bureau releases 
the database summary generated by a prob-
abilistic algorithm, based on the observed 
(and confidential) database: S = S (D).

Suppose an ill-minded hacker is eyeing 
the Census data, hoping to learn about 
your information. Looking at the released 
summary S, the hacker needs to discern 
between two possibilities: that the data you 
contributed was true (H ) or fabricated (
Hr ). If the algorithm that generated S 
is sufficiently private, the information 
contained in S (expressed in terms of 
probabilities) that can sufficiently discern 
H from Hr  is limited. Precisely speaking, 
S is ϵ-differentially private if the log ratio 
of its probabilities evaluated under either 
hypothesis (i.e. their respective likelihoods) 
is bounded within the ϵ-neighborhood 
around zero:
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and that such is true for every respondent 
(including you) who contributes to the 
Census database D. The ϵ here, called 
the privacy loss budget, controls the 
extent to which we are willing to tolerate 
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discernibility among hypotheses, or leak of 
information. The smaller the ϵ, the more 
stringent the bound becomes, and the 
less informative S is relative to the pair of 
hypotheses H and Hr .

The above quantity looks like an incred-
ibly simple, if not overly simple, metric 
to quantify the so-called “information” in 
S regarding H versus Hr  . But do take it 
seriously. The failure to maintain this log 
probability ratio at a small magnitude by 
its encrypted messages was the Achilles’ 
heel of the Naval Enigma and the Tunny 
machines, a deadly giveaway that led to 
their heroic breaking by the genius scientists 
at Bletchley Park during World War II 
(McGrayne, 2011; Zabell, 2012, 2015). In 
I. J. Good’s account of Alan Turing’s statis-
tical contribution during the war (Good, 
1979), he defined the “weight of evidence” 
concerning a hypothesis H as against 
Hr  provided by evidence S, written as 

/ :W H H SrQ V , a quantity that works out to 
be precisely the log probability ratio in [1]. 
For cipher machines such as the Enigma 
and the Tunny, S stands for the encrypted 
messages, and H, Hr  are hypotheses con-
cerning the different configurations of the 
cipher wheels. If a configuration hypothesis 
receives from S a disproportionately large 
weight of evidence relative to other hypoth-
eses, there is reason to think that it may 
be the correct configuration. Turing called 
one unit of the log probability ratio in [1] 
a natural ban, which is equal to 4.34 units 
of deciban (ten times the base 10 logarithm 
of the probability ratio), the “smallest 
change in weight of evidence that is directly 
perceptible to human intuition” (Good, 
1979, p394). Carrying over this calculation 
to the privacy context, a privacy loss budget 
ϵ set at or less than 1/4.34 ≈ 0.23 makes 
the hypotheses regarding the truthfulness 
of your input data probabilistically indis-
cernible, based on the differentially private 
release S. It would be fair to say, then, that 
the privacy algorithm behind the released 

summary S encrypts your personal informa-
tion securely, a job much better done than 
the Enigma machine. In other words, your 
information is now “beyond Enigmatic”!

Differential privacy brings clarity to the 
meaning of privacy through a formal and 
verifiable definition, setting a rigorous stan-
dard for implementation, investigation and 
future improvement. It merits other benefits 
from a technical point of view. Data releases 
compliant with differential privacy are 
resistant to post-processing, and behave 
nicely under the compounding of multiple 
sources; see Dwork et al. (2014) for details 
and Wood et al. (2018) for an approachable 
introduction. Differential privacy further 
permits the transparent dissemination of the 
privacy algorithm without compromising 
the privacy guarantee, drawing an analogy 
with public-key encryption. For statisti-
cians, this means that the data curator is 
free to publicize the inner specification of 
the privacy mechanism (as in the case of 
US Census Bureau, 2020), paving ways for 
statistical methods to account for its effect, 
and to maintain inferential validity based 
on private releases (Gong, 2019).

Just as no probabilistic promise is ever 
definitive, no privacy is absolute if we 
simultaneously demand to learn useful 
information. With differential privacy, 
however, the tradeoff between privacy and 
information is put in concrete terms. In 
the 2020 Census, we in America will col-
lectively pay an epsilon price in privacy, in 
exchange for a large body of useful knowl-
edge about this country we live in, and the 
people who live in it with us. The Census 
operationalizes democracy and equality 
through enabling fair and data-driven 
allocation of resources. A transparent and 
effective framework for privacy protection 
is yet another reason to overcome mistrust, 
and to actively and honestly participate. 
Time will tell whether the price we pay is 
money well spent.
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