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Abstract

In dynamic learning, a rational agent must revise
their credence about a question of interest in accor-
dance with the total evidence available between the
carlier and later times. We discuss situations in which
an observable event F that is sufficient for the total
evidence can be identified, yet its probabilistic mod-
eling cannot be performed in a precise manner. The
agent may employ imprecise (IP) models of reason-
ing to account for the identified sufficient event, and
perform change of credence or sequential decisions
accordingly. Our proposal is illustrated with three case
studies: the classic Monty Hall problem, statistical in-
ference with non-ignorable missing data, and the use
of forward induction in a two-person sequential game.
Keywords: Corpus of knowledge, forward induction,
IP decision rule, non-ignorable missing data, suffi-
ciency

1. Introduction

Let Cr; () be an unconditional probability function, called
a rational Credence function that depicts some idealized
agent’s uncertainty at time 7. Carnap’s Principle of Total
Evidence [1] requires that

Cr(-)=Cred (- | A),

where Cred (- | -) is a conditional probability function and
A; is all the observational knowledge that the agent knows
at time ¢. This implies the Bayesian rule of temporal up-
dating, that if between an earlier time #; and a later time t,
the agent’s total knowledge changes by the observational
report F, then

Cro () =Cry (-| F).

This Carnapian account of idealized Bayesian learning may
be limiting. Sometimes, it is difficult to see how the agent’s
total evidence at the later time may be represented by a
proposition, A;,, that reports all the observational knowl-
edge accumulated prior to #,. By observational knowledge,
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we mean the information is acquired by the agent, either
through their own perception or the aid of measurement
instruments. Observational knowledge only constitutes a
portion of all knowledge available to the agent. Specifically,
the agent’s updated credence at the latter time #, should
reflect not only the observational knowledge A;,, but also
the epistemic fact that they have learned A;, .

Denote by K;  (F) the event that the agent learns at time
t by method M that event F' obtains. The agent’s corpus of
knowledge at time t consists of the joint event

F &Ky (F). (1)
Then, the agent’s credence function at #, should be
Cry, (-)=Cred (- |Ay & F & Ky, M (F)),

which may or may not agree with the assertion
?
Cry, (\)=Cred (- |A, &F). ()

Indeed, the question-marked equality in (2) will not hold,
if the observable event F and its attainment K, p(F) be-
come epistemologically entangled. That is, the meaning
of the observational report F' depends on the context of its
attainment, K,zﬁM(F ), in a non-trivial fashion. In order to
update their credence from #; to #, under epistemological
entanglement, the agent will have to specify at the outset
a rational credence function in relation to their corpus of
knowledge (1), i.e.

Cred (F & K pr (F)).

This can be a daunting requirement for two reasons. First,
the rational credence function Cred(-) needs to be well-
defined for all F, r and M. These aspects together span an
enormous state space, on which probabilistic specification
can be difficult, if not impossible. Second, for a general
observable event F, the epistemological information of its
attainment K; y(F') is typically unobservable. Such is true
even when granted that the agent satisfies the KK-thesis, i.e.
whenever they know F, they know that they know it.
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To circumvent the epistemological entanglement and
maintain the feasibility of uncertainty reasoning using prob-
abilities, we argue that the agent may cleverly identify an
observable event that nevertheless meets the Total Evidence
condition, i.e. some special F' such that (2) holds with
equality. This requires a concept of sufficiency of an observ-
able with respect to a corpus of knowledge, put forward by
Definition 1.

Definition 1 An event F observable between times t| and
1y is said to be sufficient for (F,K;, (F)) with respect to a
question {E E°} asked at ty, provided that

Cred (K;, (F) | A & F & E) =Cred (K;, (F) | Ay & F).
3)

Following this definition, Lemma 2 ensures that when an
observable event F is sufficient for the total evidence gained
between times #; and #,, then Carnap’s rule of condition-
alization may be satisfied in the temporal updating of the
agent’s credence.

Lemma 2 [f between times t| and t, the total evidence
that the agent gains is the conjunction (F,K;,(F)), then

Crey (E) = Cry, (E | F)

if and only if F is sufficient for (F,K;, (F)) with respect to
the question {E,E*}.

We discuss situations in which the agent is capable of
identifying an observable event F that is sufficient for the
total evidence, but cannot perform its probabilistic model-
ing in a precise manner. The identified event F' offers more
information than a mere observational report the agent can
obtain between the earlier and later times. Indeed by suffi-
ciency, F is meant to encode not only the observational re-
port, but also the means through which the agent obtains the
report. Therefore, the agent may not have a non-ambiguous
probability model to account for F. We utilize imprecise
probabilities to analyze an agent’s change of credence as
a dynamic learning process. In what follows, we illustrate
our proposal using three case studies, in the contexts of the
classic Monty Hall problem (Section 2), statistical infer-
ence with non-ignorable missing data (Section 3), and the
use of forward induction in a two-person sequential game
(Section 4). Section 5 concludes with a discussion on the
operational necessity of our proposal.

2. Monty Hall Problem

In the Monty Hall problem [22, 21, 24], a valuable prize is
hidden at random behind one of three enumerated doors:
A, B, or C. The other two doors hide no prize. The Con-
testant makes a first move by designating one of the three
doors. The game’s moderator Monty Hall then opens one
of the other two doors to reveal an empty door. Last, the
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Contestant decides whether she would like to stay with the
designated door as her final choice, or switching to the third
and remaining closed door. She wins if her final choice door
hides the prize. Without loss of generality, suppose that the
Contestant designated door A as her initial door at #1. The
question is, what is her credence at #, about door A being
the prize door, after Monty reveals an empty door to her?
The Contestant knows that the prize was placed uni-
formly randomly behind one of the three doors, and no
further information whatsoever was supplied to her at the
first stage of the game. Letting E denote the prize door, we
have that the Contestant’s credence about E at ¢ is uniform:

1
Cr,l (E) = g

and
. 1
Cry, (E | designate A) = 3

forall E € {A,B,C}. Furthermore, letting D denote the door
to be revealed to the Contestant as empty, we have that

1/3 1

Cr,l (E =A | designate A,D) = m = )

“4)

for both D € {B,C}. That is, the Contestant’s conditional
credence for door A to be the prize door becomes 1/2, upon
knowing either door B or door C is empty.

However, one would be mistaken to think that the Con-
testant’s credence about whether A is the prize door at time
1, Cry,(E = A), is represented by the quantity (4). The total
evidence available to the Contestant at #, is not just that
door D is empty, but also the fact that Monty Hall revealed
door D to be empty, with D € {B,C}. Furthermore, it is
through and only through Monty’s reveal that the Contes-
tant learns door D to be empty. Therefore, the observable
event F' that is sufficient (in the sense of Lemma 2) for the
Contestant’s total evidence is

MHReveals (D),

which in the eyes of the Contestant satisfies

Cry, (K, (D) iff MHReveals (D)
iff K;, (MHReveals (D))) = 1.

Having identified the observable event sufficient for her
total evidence, the Contestant’s credence about the prize
door at time #, retains an element of imprecision. In the
case the designated door, A, were indeed the prized door,
Monty would have the liberty to choose between either
door B or door C to reveal to the Contestant, as either door
would be empty. As the Contestant has no information
about Monty’s inclination to reveal either door when he has
that choice, her conditional credence function for the joint
event (E,MHReveals (D)) given that she designated door A
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is represented by an imprecise probability. Table 1 specifies
this imprecise probability, in which E represents the true
door behind which the prize stands, D the door that Monty
reveals to be empty, and x € [0, 1] Monty’s inclination to
reveal door B over door C when he has the liberty to do
both. This implies that

Cry, (E = A | designate A, MHReveals (D = B)) 5)
x/3
=——-—-¢€10,1/2 d
i c01/2, an
Cry, (E = A | designate A, MHReveals (D = C)) (6)

(1-x)/3
= aowpis 02
Taking into account the total evidence available at f,, the
Contestant’s credence Cry, (E = A) is equal to either (5) in
case Monty revealed door B to her, or (6) in case Monty re-
vealed door C to her. Therefore, her latter credence Cry, (E)
is represented by the set of probabilities

2 ={P:P(h) €0,1/2]},

regardless of which door Monty Hall reveals to her.

It is worth noting that in this analysis, since we assume
that the Contestant has no information whatsoever about
Monty’s inclination x, her latter credence exhibits dilation
[20] when compared to her former credence Cry, (E). For
the same E, the range of values that Cr, (E) may take
strictly contains that of Cr;, (E), regardless of which event
in the partition of the total evidence space realizes between
t1 and 1, that is, regardless of which (not-E) door Monty
Hall reveals to the Contestant. [6] examines dilation in this
example in further detail.

Table 1: Cr,, (E,MHReveals (D) | designate A), ~ where
E € {A,B,C} is the true door to the prize, and
D € {A,B,C} the door that Monty Hall Reveals
to the Contestant, given that the Contestant
designated door A as her initial choice.

Monty Hall Reveals D
Prize door E A B C
A 0 x/3 (1-x)/3
B 0 0 1/3
C 0 1/3 0

3. Non-ignorable Missing Data

Suppose an experiment is designed to address questions
about some feature pertaining to the N members of a pop-
ulation, N being potentially infinite. For each member i

of the population, let X; denote the true state of their fea-
ture. At time ¢1, a simple random sample of » members
of the population was surveyed. By time #,, however, only
nyps < n observations responded, whereas 7,,s = n — np;
values are missing. Letting X,,, denote the collection of
nops Observed responses, it is widely understood that the
conditional credence

Crtl ( | XobS)

is not necessarily the correct credence that the investigator
should endorse at #,. It does not take into consideration the
total evidence available to the investigator, which should
include the fact that a specific fraction of the sampled mem-
bers did not respond.

The explicit accounting for the nonresponse requires the
introduction of an additional binary observable random
variable D = (Dy,...,D,). If the surveyed individual i re-
sponded then D; = 1, and D; = 0 if they did not respond.
The observed and missing observations can respectively be
denoted as

XObS:{Xi:i: 17"'7”7Di:]}a
Xmis:{Xi:izla"'an,Di:0}7

and accordingly n,,s = Y.° | D; and nyis = YL (1 — D;).
The investigator’s total evidence at time #, is

(Xobsa D) . (7)

The observable event (7) is sufficient for the investigator’s
credence for 6 if and only if

Cry(0) =Crs, (0 | Xpps,D) . 8)

The assertion (8) lies at the foundation of the missing data
literature, and is key to avoiding epistemic entanglement
using observable evidence. To update their credence for
the scientific question of interest despite partially miss-
ing observations, the investigator must be able to supply
some kind of knowledge about the nonresponse mechanism.
This requirement may well be hard to satisfy. A most chal-
lenging type of nonresponse mechanism to model is the
non-ignorable mechanism [14]. Non-ignorability refers to
the case when the response probabilities depend nontriv-
ially on the values of the missing data. By definition, then,
any observed and partially missing dataset contains only
limited (if any) information about the non-ignorable mech-
anism. This is precisely why modeling non-ignorability is
difficult in practice. The investigator often must conduct
post-survey coverage studies in order to gain the needed
insight.

As a concrete example, suppose X; € {0,1} is a binary
feature for an individual, and the investigator is interested
in studying 6, the population proportion of individuals pos-
sessing the positive feature. Further suppose that the posi-
tive feature X; = 1 is associated with an adverse health or
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social perception, e.g. that a person smokes. Therefore, an
individual who possesses this positive feature is less likely
to respond to the survey. (For simplicity, we do assume
that if an individual responds, then they respond truthfully.)
For a real study on non-ignorability in opinion surveys
concerning smoking, see [18].

The investigator posits a parametric sampling model

X;| 6 ~ Ber(0),

and a nonresponse mechanism such that for some constant

Y€10,1),

That is, all surveyed individuals with a negative feature
responded, whereas individuals with a positive feature only
respond with probability y < 1. This nonresponse mecha-
nism is non-ignorable, because the response indicators D
are dependent on the values of the missing data X,,;;.

To proceed with the analysis, we note that the likelihood
function for 6 is a marginal likelihood function, integrat-
ing out the unobserved missing responses X,;;. Writing
Sobs = Yi—1 XiD;, the sum of observed positive responses,
the likelihood function takes the form

D; ~ Ber(y)
D=1

it X =1,
if X; = 0.

P(XObSaD | 9)
- Z P(Xobsaxmis | O)P(D | XobsaXmis)
Xnis€{0,1} mis
= (Gy)‘Vohs (1— e)nabrsabs [O(1—7)+(1— 9)]nmis )

For the purpose of illustration, suppose that the investiga-
tor’s prior credence function Cry, (0) is characterized by
the Beta(ct, ) family of distributions, with density

B! (0. B) 0% (1-6)",

where B(a,b) is the Beta function. Writing O,ps = Sops +
and Bops = Nops — Sops + B, by (8) we have that the investi-
gator’s posterior credence function Cry, (6) has density

Fr(0)=cy 0% (1—0)P» B (1—y)+ (1-6)]"™,
)]

where the normalizing constant

Cy = B (aobmﬁobs)t@((aobsaﬁobs) s (1 =% 1) s _nmis) ,

where % (b,Z,—d) is Carlson’s multiple hypergeomet-
ric function [2], which has been previously studied
in the Bayesian modeling of censored categorical data
[3, 9] to represent the expectation of marginal lin-
ear combinations of Dirichlet random variables. The
value of Z((Qups, Bovs), (1 —7,1), —nmis) is equal to
(1 - '}/)nmis 2k (_nmisaﬁobs; Oobs + Bobs: '}// ('}/_ 1))’ where
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Figure 1: Posterior credence function Cr, (6) in (9) for dif-
ferent values of v, the individual response prob-
ability with positive feature, for a hypothetical
observation with (1, nyps, Seps) = (10,5,2). Prior
credence Cry, (0) is uniform on [0, 1].

2F1 (u1,up;11;7) is the generalized hypergeometric func-
tion.

The posterior credence function Cr;, (6) depends on the
response probability 7y for the positive feature. It remains for
the investigator to determine what values of ¥ is reasonable.
With v left unspecified, the posterior credence function
Cry,(0) in (9) induces a set of probability functions

yz{ﬂpmyiéﬁwmayepn}. (10)

Figure 1 depicts Cr,(0) for different values of 7, for a
hypothetical sample with (1, 1yps,Sops) = (10,5,2). Prior
credence Cry, (0) is uniform on [0, 1], corresponding to & =
B = 1. Note that the triple (1, 7ps, Sobs) is a reduction of the
sufficient observable event in (7), and is minimally sufficient
for the posterior credence Cry, (0) in the usual sense of the
phrase. As is clear from Figure 1, the posterior credence
function Cry,(0) exhibits large differences depending on
the value of . If 7 is small, it suggests that individuals with
X; = 1 are much less likely to respond. Therefore, the fact
that half of the surveyed individuals did not respond should
be taken as strong indication that there are more people
with a positive feature X; = 1 that are unobserved, and the
investigator should put higher posterior credence for 6 on
the larger values. Whereas if 7 is large, individuals with
X; = 1 are not much less likely to respond, and the posterior
credence for 6 tend towards the smaller values.

We remark that the IP treatment presented here for the
case of non-ignorable missing data has close ties to the
literature of partial identification in econometrics; see e.g.
Chapter 1 of [17]. Indeed, the investigator’s updated cre-
dence is partially identified, in the sense that the observed
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data (X,ps, D) do not provide enough discerning informa-
tion to pin down Cr,(0) as a unique probability. The identi-
fication region of Cr,(6) is precisely the set of probabilities
specified by (10). If the investigator would like to avoid
partial identification, he or she may adopt a “full Bayesian”
approach by further imposing a precise prior credence func-
tion on 7, the probability of missing the observation given
a positive feature. However, since the observed data do not
provide identifying information about 7, the investigator’s
future credences about the primary question of interest, 6,
may be sensitive to the prior specification for y. Careful
deliberation should be practiced.

4. Forward Induction with Imprecise
Probabilities

In this section, we consider two-person sequential games
in which each player is required to specify a grand plan for
action at each node of the game tree where the player needs
to make choices. A game-theoretic criterion that dictates
what kind of grand plans should be deemed as acceptable
is subgame perfection; see e.g. [8]. Under subgame per-
fection, a grand plan is said to be acceptable if and only
if it yields acceptable strategies within each sub-game of
the larger game. However, since players who adhere to
subgame perfection must treat each subgame as a separate
game irrespective of all other aspects of the larger game,
including choices that have been made by their opponents,
they can violate total evidence in devising their grand plans
for the game.

To take into account the total evidence, the player may
endorse instead the criterion of forward induction [11],
by recognizing and utilizing what they observe from the
preceding plays that lead them into the subgame. That is,
at the beginning of each subgame, the player works with
the total evidence which includes not only their uncertainty
model about their opponents, but also the fact that the
dynamic of the sequential game has lead both of them to
this particular subgame.

In addition to adopting forward induction reasoning in
the sequential game, we also assume that the players em-
ploy imprecise probability models of uncertainty, repre-
sented by a set & of personal probability functions, rather
than by a single such function, P. The literature has demon-
strated the value, and indeed the necessity, of using IP
models of uncertainty in game theory [e.g. 5, 23, 15].

We now describe the setting of the game. Two players,
Sidney and Isaac, are about to play a two-stage extensive
form sequential game. In the first stage of the game, Sidney
chooses between their playing either the Concert Game,
or playing the Lecture Game. In the Concert game, they
coordinate on attending either (A) a Bruch violin concerto,
played by Itzhak Perlman, or (B) a Dolly Parton concert.
In the Lecture game, they coordinate on attending (C) a
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Sidney
Concert Gm;ie Le;ture Game
Sidney Sidney
As Bs Cs Ds
A 1,2 10,0 Cr |15,4: 0,0
Isaac Isaac
B 0,0 21 Dt | 0,0 i415

Figure 2: A two-person, two-stage extensive form sequen-
tial game, in which one player (Sidney) chooses
which subgame for both players to play at the
second stage.

lecture by Chomsky, or (D) a lecture by Ellsberg. In these
subgames, Sidney is Column player and Isaac is Row player.
The goal of both players is to arrive at a precise action plan
at the end of the iterative game, while at the same time
maximizing their own utility outcome to the extent possible.
We pay particular attention to the interpretation of players’
strategies and the utility outcomes from Isaac’s point of
view, whose application of forward induction highlights the
impact of total evidence in guiding his subgame decision
as the Row player.

In either the Concert or Lecture subgames, we allow the
two players to adopt an extreme IP model that reflects max-
imal uncertainty about the other player’s choices. That is
in each subgame, each player uses the set & of all proba-
bilities for what the other player might choose from among
all his mixed strategies. For instance, without additional ev-
idence, Isaac is maximally uncertain about which strategy
Sidney will use in the Lecture Game. That is,

‘@I{Seacatfxre {XAS D (1 - x) Bs}

={P:0<P(xA;®(1—x)B;) <1}, Vxe|[0,1].

The two subgames each have the following three Nash
equilibria pairs, two are pure and one is mixed. In the
Concert Game:

* (A1,Ag) yields utility outcome (1,2);
* (By,Bs) yields utility outcome (2,1);

* ((1/3)A;®(2/3)B1,(2/3)As® (1/3)Bs) yields util-
ity outcome (2/3,2/3).

In the Lecture Game:
* (Cy,Cs) yields utility outcome (1.5,4);
* (Dy,Ds) yields utility outcome (4,1.5);

. ((3/11)C; @ (8/11)Dy, (8/11)Cs @ (8/11)Ds) yields
utility outcome (12/11,12/11).



TOTAL EVIDENCE AND LEARNING WITH IMPRECISE PROBABILITIES

One complication with the analysis of games represented
by IP models is that there exists a variety of applicable
decision rules. A different choice of rules may yield dif-
ferent action plans and different consequences [19, 16]. In
the current two-stage game, both players aim to arrive at
one precise action plan, and the IP decision rule that they
employ must be conducive to this goal. Thus in this exam-
ple, the IP decision rule that both players employ restricts
admissibility to those options that maximize minimum ex-
pectation with respect to the set & of probabilities, i.e.
options that are I'-maximin [4], among those options that
maximize expected utility for some probability P in the set
2, i.e. options that are E-admissible [12]. This is Levi’s
lexicographic rule [13] that uses E-admissibility as the pri-
mary consideration, and I'-maximin as the secondary (or
security) consideration for admissibility. A brief discussion
about the choice of IP decision rules appears at the end of
this section.

Since each player has a maximally uncertain IP model
for which strategy the other payer chooses in these games,
each of these three Nash pairs also are pairs of E-admissible
options, because each of these three strategies maximizes
expected utility against the other’s matching strategy. More
significant, in each game, in the light of the “equalize”
mixed strategy Nash equilibrium pair, each mixed strategy
that Isaac might choose also is E-admissible against that
mixed strategy for Sidney. For instance, in the Lecture
Game, each mixed strategy that Isaac might play, xC; &
(1—x)Dy, is E-admissible against Sidney’s equalizer mixed
strategy, (8/11)Cs @ (3/11)Ds.

Next, we turn to considerations of security maximization.
In the Concert Game:

* Isaac’s mixed strategy, (2/3)A; @ (1/3)By secures a
minimum expectation of 2 /3, and that is the maximum
security possible for Isaac among his (E-admissible)
strategies.

* Likewise, by the symmetries of the game, Sidney’s
mixed strategy (1/3)As @ (2/3)Bg secures a minimum
expectation of 2/3, and that is the maximum security
possible for Sidney relative to all his (E-admissible)
strategies.

In the Lecture Game, the security maximizers are

* For Isaac, (8/11)C; @ (3/11)Dy secures 12/11 utility,
and

* For Sidney, (3/11)Cs @ (8/11)Ds secures 12/11 util-

ity.

Here is how we apply forward induction with these IP
decision rules in the two-stage game between Isaac and
Sidney, where Sidney plays first to choose which subgame
they play. We use the following hypothetical “cheap talk”
dialogue to make explicit the steps in the IP decision mak-
ing.
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Sidney: Isaac, suppose I choose we to go to the Con-
cert. What will you do?

Isaac mumbles to himself: Well, if 1 saw that Sid
chose the Lecture Game, that would give him an E-
admissible option with a security of 12/11. Hmm...

Isaac: Then, Sid, if you choose the Concert Game
(and reject the Lecture Game) you’d be signaling to
me that you expect at least 12/11 in the Concert Game.
So, I"d choose to join you to hear Perlman play Bruch,
and you’ll get 2 units utility while I get only 1.

Sidney: Very good. Let’s go to the Lecture!

Isaac mumbles to himself: Well, rejecting Concert
means that Sid now expects at least 2 units by going
to the Lecture.

Isaac: Then, Sid, I see I'm stuck going to hear Chom-
sky with you.

Sidney: Yes. But at least you’ll enjoy that more than
you would the Bruch!

Note, the application of forward induction illustrated
in this example conforms to the conjecture that players
(e.g. Isaac) can avoid the epistemic entanglement by us-
ing observable (even hypothetical) decisions from earlier
in the game to fix expectations later in the game, without
needing to incorporate an additional epistemic random vari-
able for current knowledge. Indeed, in the first iteration
of the game, Isaac chooses Perlman’s Bruch (A;) over his
preferred Dolly Parton (Bj), because he knows that Sid-
ney rejected altogether the Lecture subgame (and thereby
a security of 12/11), a piece of observed knowledge that
precedes the current Concert subgame. Similarly, in the
second iteration of the game Isaac chooses Chompsky (Cy)
over his preferred Ellsberg (Dj), because he knows that
Sidney rejected the Bruch concerto (and thereby a certain
utility outcome of 2) in the Concert subgame, which is
again observed knowledge that precedes the current Lec-
ture subgame.

Before concluding this section, we remark on the use
of Levi’s lexicographic IP decision rule in this example.
The primary purpose of the example is to illustrate for-
ward induction in sequential games with ambiguity, as a
means for the players to avoid the epistemic entanglement
using sufficient observables. Given that both players pos-
sess vacuous knowledge about each other’s strategies, this
lexicographic decision rule (i.e. E-admissibility first, with
I'-maximin as secondary security) allows the players to
arrive at a unique strategy. As discussed, E-admissibility
alone reduces the admissible options only to the infinite
number of rationalizable strategies. On the other hand, if
both players endorse ['-maximin without consideration for
E-admissibility, it would hinder Isaac’s ability to perform
forward induction and make use of Sidney’s suggestion for
the Concert game as evidence to guide his own choice. In
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Isaac’s view, Sidney’s strategy needs not be Nash, if he is
not bound by E-admissibility.

We do not defend the lexicographic rule as the “cor-
rect” rule for this game. Nor do we preclude the possibility
that other IP decision rules may offer sensible alternative
analyses that deliver a unique strategy at the end, and to
help the players avoid the epistemic entanglement. In fact,
one may question the merits of the lexicographic rule, on
the grounds of information value. It is understood that the
lexicographic rule does not necessarily respect the value
of cost-free, new information [19]. The mere suggestion
by Sidney that they might play the Concert game, despite
being a hypothetical one, is enough to steer the game to-
wards the unique outcome that maximizes Sidney’s utility
globally, but not Isaac’s. The answers to some questions
remain open for further research. For example: (i) What
was Isaac’s assessment on the net value [10] of his total
evidence? and (ii) In general, what should a player do when
their total evidence incurs a negative net value?

5. Discussion

We have discussed how imprecise probabilities can help an
agent to update their temporal credence with respect to the
total evidence, in case a sufficient and observable reduction
to it can be found. A question that could have been asked
in the first place is whether the sufficiency requirement is
necessary. In other words, instead of worrying about finding
a sufficient observable event F to serve as a reduction, why
don’t we consider IP models for the total evidence pair
(F,K;m(F)) asin (1)?

The kind of imprecise probabilities that we employ in
this paper may not be able to capture all varieties of uncer-
tainty and ignorance that a rational agent may have. An IP
model is a collection of probabilities defined on a common
state space associated with a common sigma field. IP mod-
els are useful when the agent is unable to pinpoint their
credence function in relation to their corpus of knowledge,
nevertheless seeks to update their credence as new informa-
tion is learned. However, the agent must be certain about
their corpus of knowledge, for it is the basis on which to
derive any credence at all, precise or otherwise. Expression
of uncertainty that pertains to the act of knowing, such as
captured by the phrase “I’m not sure if [ know F”, calls for
constructs such as probabilities of higher types as advocated
by Jack Good [7]. In contrast to IP models, however, higher
types of probabilities are fuzzy not only in themselves, but
also in the inequalities that can express them. They pose a
different challenge in terms of their operationalization, and
are therefore out of scope for this paper.

Another open question is whether it is always possible
for the agent to find an observable sufficient reduction to
their total evidence. We surmise the answer may not be
categorically affirmative. In our formulation of the agent’s
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corpus of knowledge (1), the event K; 5/(F) that signifies
the attainment of the observational report F depend not
only on the time of observation ¢, but also the method
M through which the observation of F' can be made. For
certain method M, to ascertain the event K; y(F), or any
sufficient reduction of it, may well be infeasible for the
agent. For example, the measurement of certain complex
scientific phenomena is viable only in theory, or may be too
costly to perform. Nevertheless, if the agent can identify
an affordable and practically observable sufficient reduc-
tion for which only ambiguous credence is available, they
should prefer it to an unattainable one for which precise
credence is available. As demonstrated in this paper, the
agent may avoid the epistemic entanglement and extract
meaningful inference from the former, using the tools of
imprecise probabilities.
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