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Abstract
The literature on algorithmic fairness has examined exogenous sources of biases 
such as shortcomings in the data and structural injustices in society. It has also 
examined internal sources of bias as evidenced by a number of impossibility theo-
rems showing that no algorithm can concurrently satisfy multiple criteria of fairness. 
This paper contributes to the literature stemming from the impossibility theorems by 
examining how informational richness affects the accuracy and fairness of predic-
tive algorithms. With the aid of a computer simulation, we show that informational 
richness is the engine that drives improvements in the performance of a predictive 
algorithm, in terms of both accuracy and fairness. The centrality of informational 
richness suggests that classification parity, a popular criterion of algorithmic fair-
ness, should be given relatively little weight. But we caution that the centrality of 
informational richness should be taken with a grain of salt in light of practical limi-
tations, in particular, the so-called bias-variance trade off.
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1 Introduction

Many decisions matter for people’s lives: whether an applicant is granted a loan; 
whether a patient is given medical care; whether a defendant is placed in preventa-
tive detention. Human beings often make these decisions: bankers, doctors, judges. 
But their judgment can be mistaken. An applicant in good financial standing could 
be denied a loan; a sick patient could be denied treatment; someone who is not going 
to commit a crime could be put in jail. Historically, these mistakes have adversely 
impacted select social groups the most, racial and gender minorities, and the eco-
nomically worse off.1 If human judgment is aided by machine judgment, the accu-
racy and fairness of our decisions would improve—or so some argue.2 Data about 
every aspect of our lives are now easily available. Individuals can be classified based 
on the predictive attributes they possess and assigned a risk score expressing the 
probability that the outcome of interest will occur. Risk scores are not infallible, of 
course. But—so the argument goes—since they are based on data, predictive algo-
rithms should perform better than human judgment in both accuracy and fairness.

Despite this optimism, many are alarmed. Three reasons for concern exist in 
the literature. First, many worry about the ripple effects of the historical data on 
which predictive algorithms are trained. Defects in the data can have far reaching, 
harmful consequences.3 Call this the distorted data argument. Second, even if the 
training data were not distorted and portrayed an accurate picture, the worry about 
predictive algorithms would not necessarily subside. Trends in the data reflect 
trends in society. The society we are in is replete with group disparities in wealth, 

1 There is strong evidence of an association between race and differential treatment by health care pro-
viders (McKinlay, 1996; Schulman, Berlin, Harless, Kerner, Sistrunk, Gersh, Dubé, Taleghani, Burke, 
Williams, Eisenberg, Ayers, and Escarce, 1999; Chen, Rathore, Radford, Wang, and Krumholz, 2001; 
Petersen, Wright, Peterson, and Daley, 2002) Whether or not these differences are explained by implicit 
biases is unclear (Dehon, Weiss, Jones, Faulconer, Hinton, and Sterling, 2017). On lending practises, 
there is a growing body of literature documenting the impact of redlining on economic inequalities today 
(Aaronson, Faber, Hartley, Mazumder, and Sharkey, 2021; Ladd, 1998). The justice system is filled with 
racial disparities at different stages (Rehavi and Starr, 2014; Gross, Possley, Otterbourg, Stephens, Pare-
des, and O’Brien, 2022).
2 For example, the American Civil Liberty Union of New Jersey argued that the deployment of pre-
dictive algorithms in criminal justice can end the unfair system of bail that most disproportionately 
harms the poor; see https:// www. aclu- nj. org/ theis sues/ crimi nalju stice/ pretr ial- justi ce- reform. For a more 
detailed defense of this claim, see Slobogin (2021). The consulting firm McKinsey estimated that pre-
dictive algorithms can save $300 billion every year in U.S. healthcare costs (Manyika, Chui, Brown, 
Bughin, Dobbs, Roxburgh, , and Byers, 2011). More generally, for the positive impact of big data in 
health care, see Raghupathi and Raghupathi (2014).
3 Data can be defective because of their reliance on proxies for example, when arrest data are used as 
proxies for actual criminal offending (Barabas, Bowers, Buolamwini, Benjamin, Broussard, Constanza-
Chock, Crawford, Doyle, Harcourt, Hopkins, Minow, Ochigame, Priyadarshi, Schneier, Selbin, Dinakar, 
Gebru, Helreich, Ito, O’Neil, Paxson, Richardson, Schultz, and Southerland, 2019) or when healthcare 
costs are used as proxies for actual medical needs (Obermeyer, Powers, Vogeli, and Mullainathan, 2019). 
Beside the proxy problem (also known as measurement problem), biases can arise during data collec-
tion, for example, when certain groups are under-sampled. For an overview of sources of bias in the data, 
see, among others, Suresh and Guttag (2021). For an analysis of the implications of biased data from the 
standpoint of US constitutional law, see Barocas and Selbst (2016).

https://www.aclu-nj.org/theissues/criminaljustice/pretrial-justice-reform
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crime, health.4 If—as many have argued—the status quo is shaped by structural 
injustice against historically disadvantaged groups, an accurate prediction would 
reinforce an unjust reality.5 This is especially the case when algorithmic predic-
tions prompt a punitive or coercive decision such as loan rejection or preventative 
detention. Call this the historical injustice argument.6

These two arguments point to exogenous problems that lie on the input side 
of things: the data used to train predictive algorithms and the unjust society from 
which data originate. One might conjecture that, if distortions in the data and injus-
tices in society were eliminated, predictive algorithms should no longer be cause 
for concern. But this conjecture would be premature. Predictive algorithms can still 
be the target of what we might call an inner critique. This inner critique stems from 
a number of theorems in the computer science literature about the impossibility of 
algorithmic fairness. It is this inner critique that we focus on in this paper.

To state the impossibility theorems, we should begin with laying out a number 
of fairness criteria of algorithmic performance. These criteria are an attempt to cap-
ture in formal, mathematical language the requirement that a predictive algorithm 
should treat people fairly. Predictive parity and classification parity are two of the 
most common criteria in the computer science literature. Predictive parity requires 
that the rate at which an algorithm’s predictions are correct—the fraction of predic-
tions that are correct—be the same across groups. For example, predictive parity 
would be violated whenever people that the algorithm predicted would default on 
their loan ended up actually defaulting, say, in 90% of the cases if they were white, 
but only in 60% of the cases if they were black. Another popular criterion, clas-
sification parity, requires that the rates at which individuals are the recipients of 
correct predictions be the same across groups. If the prediction and the outcome are 
both binaries, this criterion requires that the true positive and true negative rates—
the fraction of truly positive people that are predicted to be positive, and the frac-
tion of truly negative people that are predicted to be negative—be the same across 
groups. It would be a violation of classification parity if people who were, in an 
objective sense, not going to default on their loan were erroneously predicted to 
default in 10% of the cases if they were white and 30% if they were black. Stated 
more formally, the two criteria require the equalization—across two distinct groups 
of interest—of two different conditional distributions. Predictive parity requires 
the equalization across groups of the conditional distributions of the outcome of 

4 Along similar lines, Mitchell et  al. (2021) draw a distinction between statistical bias (a mismatch 
between the world and the sample used to train the model) and societal bias (a mismatch between the 
world as it is and the world as it should be).
5 Define “structural injustice" as any historically entrenched distribution of goods, benefits, powers and 
advantages (or their negative correlates) among social groups, where such distribution negatively impact 
the well-being of specific social groups and not others. See Powers and Faden (2019) and Young (2003).
6 Deborah Hellman (2023) calls this phenomenon compounding injustice Facts grounded in past injus-
tices are used as the basis for making punitive decisions in the present, thereby compounding the past 
injustice.
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interest given the prediction.7 Instead, classification parity requires the equalization 
across groups of the conditional distributions of the prediction given the outcome 
of interest.8

Predictive and classification parity are group measures of fairness. They require 
that differences in algorithmic performance across groups be eliminated.9 They are 
plausible measures of algorithmic fairness on the assumption that differences in 
algorithmic performance will eventuate in differences in the allocation of benefits 
and burdens across groups since algorithmic predictions guide these allocations. 
But the major obstacle toward satisfying these criteria is constituted by a number of 
impossibility theorems, now well-known in the computer science literature. These 
theorems show that no algorithm can satisfy all candidate criteria of algorithmic 

8 Formally, a predictive algorithm satisfies equal classification accuracy if it has the same false positive 
rates across groups:

as well as the same false negative rates across groups:

The satisfaction of these conditions depends on a specific risk threshold that is considered high enough 
to make a positive classification. Balance is another measure of classification parity which, however, 
does not depend on selecting a specific risk threshold. A predictive algorithm is said to be balanced if 
it assigns on average the same risk scores for people with the same positive outcome ( Y = 1 ) or negative 
outcome ( Y = 0 ) in each group membership. In terms of expectation, balance can be defined as follows:

for any group g and outcome y = 0 or 1.

P(S ≥ a ∣ Y = 0,G = g) = P
(

S ≥ a ∣ Y = 0,G = g�
)

∀g ≠ g�,

P(S ≤ a ∣ Y = 1,G = g) = P
(

S ≤ a ∣ Y = 1,G = g�
)

∀g ≠ g�.

E(S ∣ Y = y,G = g) = E(S ∣ Y = y)

9 In contrast, individual fairness is often understood as equal treatment of similarly situated individuals 
(Dwork, Hardt, Pitassi, Reingold, and Zemel, 2012; Sharifi-Malvajerdi, Kearns, and Roth, 2019) This 
conception of algorithmic fairness tracks how an individual is treated relative to others by constructing 
a counterfactual (Kusner, Loftus, Russell, and Silva, 2018). On the apparent conflict between individual 
and group fairness, see Binns (2020).

7 Formally, the algorithm’s prediction should satisfy the following equality between conditional prob-
ability statements:

where Y is the binary outcome to be predicted (which can take values 1 or 0) and G is the group 
membership based on a protected classification. The expression S ≥ a is the algorithm’s binary 
prediction of the positive outcome Y = 1 . Predictive algorithms usually make a fine-grained prediction in 
terms of a risk score S. The greater the score, the greater the probability of the outcome. The algorithm’s 
binary prediction results by thresholding the risk score at some value a that is considered sufficiently 
high. Another common criterion of predictive parity is calibration, a more fine-grained version of equal 
positive predictive value. This measure of fairness is not dependent on a decision threshold. It compares 
the predictive accuracy of the algorithm across groups for each risk score, not just risk scores above the 
threshold. A predictive algorithm is relatively calibrated (Chouldechova, 2017; Corbett-Davies and Goel, 
2018) if

If the risk score further satisfies P(Y = 1 ∣ S,G) = S , we say that it is absolutely calibrated (Kleinberg, 
Mullainathan, and Raghavan, 2017).

P(Y = 1 ∣ S ≥ a,G = g) = P
(

Y = 1 ∣ S ≥ a,G = g�
)

∀g ≠ g�,

P(Y = 1 ∣ S,G = g) = P
(

Y = 1 ∣ S,G = g�
)

∀g ≠ g�.



1 3

Informational richness and its impact on algorithmic fairness  

group fairness, in particular, no algorithm can satisfy both predictive and classifica-
tion parity.10 These theorems only require minimal assumptions: first, the algorithm 
can make mistakes; second, the two groups being compared have different base rates 
of the outcome of interest, say different rates of loan defaulting. Exogenous factors, 
such as distorted data or historical injustice, cannot be blamed since the impossibil-
ity theorems are a mere mathematical consequence of the fact that the conditional 
distributions of two uncertain quantities—the probability of the outcome given the 
prediction or the probability of the prediction given the outcome—are generally 
untethered. In this sense, the impossibility of concurrently satisfying different fair-
ness criteria can be viewed as an inner critique of predictive algorithms.11

Reactions to the impossibility theorems have been threefold. One line of 
argument emphasizes pragmatic considerations. Many in the computer science 
literature have pointed out that algorithmic decisions must confront trade-offs, first 
between accuracy and fairness but also between the different criteria of fairness 
themselves.12 Whether one criterion of fairness takes precedence over another may 
depend on matters of context.13 A second line of argument rejects altogether the 
dilemma raised by the impossibility theorems and emphasizes the goal of realizing 
substantive fairness, as well as ending oppression and historical injustice.14 Finally, 
a third line of argument is conceptual and is prevalent in the philosophical literature. 
This approach resists predictive or classification parity as adequate criteria of 
algorithmic fairness because they do not genuinely capture requirements of fairness. 
This resistance is justified by constructing hypothetical scenarios in which our 
intuitions about algorithmic fairness (or unfairness) diverge from the satisfaction (or 
violation) of a fairness criterion of interest.15

10 The two most well-known impossibility results are due to Chouldechova (2017) and Kleinberg et al. 
(2017). An earlier result was proven by Borsboom et al. (2008). There is also a possibility result due to 
Reich and Vijaykumar (2021) who show that classification parity (specifically, equal false positive and 
false negative rates across groups) and predictive parity (specifically, calibration) can be concurrently 
satisfied.
11 Some claim that different performance criteria of algorithmic fairness embody different moral com-
mitments about what fairness requires. In this sense, the impossibility theorems underscore a conflict 
between different moral commitments about algorithmic fairness (Heidari, Loi, Gummadi, and Krause, 
2019). This interpretation is compatible with our own. Our claim that the impossibility theorems consti-
tute an inner critique underscores the fact that violations of fairness criteria can occur absent exogenous 
sources of bias in the data or in society. On a more technical level, a popular explanation for why these 
violations of fairness criteria occur even without exogenous biases appeals to the so-called problem of 
infra-marginality. As soon as two groups have differences in prevalence—say, differences in criminality, 
financial stability or health—the shape of the risk distributions of the two groups, as viewed by the pre-
dictive algorithm, will be different. This implies, inevitably, that the rate of correct predictions will differ 
across groups, thus giving raise to violations of one criterion of fairness or another (Corbett-Davies and 
Goel, 2018).
12 On trade-offs between different fairness criteria, see Berk et al. (2021) and Lee et al. (2021).
13 On the contextuality of criteria of algorithmic fairness within a theory of justice that applies to predic-
tions, as opposed to decisions, see Lazar and Stone (2023).
14 On this more radical approach, see Green (2022).
15 In philosophy, Brian Hedden (2021) and Robert Long (2021) have provided the most discussed exam-
ples.
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Our contribution adds to each of these lines of argument, although our focus is on 
the conceptual point. We agree that common criteria of algorithmic fairness do not 
fully capture what it means for predictive algorithms to be fair. But, besides offering 
hypothetical scenarios as counterexamples, the current literature does not explain, 
in a principled manner, why these fairness criteria fall short. Methodologically, reli-
ance on hypothetical scenarios can also be questioned insofar as these scenarios are 
not representative of how algorithmic predictions are made. To remedy this, we con-
struct a more realistic probabilistic model designed to mimic how predictive algo-
rithms are trained on data in which group membership is causally implicated. We 
then examine the model via a simulation study.

Another limitation of the existing literature on the impossibility theorems 
is its primary focus on what we call criteria of performance. These criteria track 
algorithmic performance in the long run: they track how often an algorithm 
makes mistakes (accuracy) and how these mistakes are distributed across groups 
(fairness). But besides performance, another dimension deserves attention, what 
we call conscientiousness. Compare a doctor who makes diagnoses on just few 
sparse symptoms and a doctor who carefully assesses all the relevant symptoms that 
a patient exhibits. By taking into account more information, the second doctor is 
more conscientious than the first. Similarly, an algorithm can base its predictions 
on a richer or poorer set of predictive features. The richer the information, the more 
conscientious the predictions.16

Our focus on conscientiousness paired with the simulation study will help to see 
that not all performance measures are born equal. Under normal circumstances, 
accuracy and conscientiousness go hand in hand, and fairness—understood as pre-
dictive parity—does too. Classification parity is the outlier, and this makes it a par-
ticularly objectionable criterion of algorithmic fairness. On the other hand, all per-
formance measures are prone to manipulation: they can be violated or satisfied by 
means of ad hoc manipulations of the characteristics of the groups being compared. 
In such cases, performance measures fail to align with the intuitive requirements 
of algorithmic fairness. We will argue that this failure is explained by the extent 

16 The idea of conscientiousness has been discussed—under different names—in both the philosophical 
and computer science literature in different ways. In the philosophical literature, the idea of conscien-
tiousness is closely related to what some call “the right to be treated as an individual.” This right can 
be understood in an informational sense, roughly as the right to be judged on as much relevant infor-
mation as what is reasonably available (Lippert-Rasmussen, 2011) Others have emphasized the impera-
tive of avoiding doxastic negligence and collecting more information if appropriate (Zimmermann and 
Lee-Stronach, 2022). Another, non-informational conceptions of the right to be treated as an individual 
focuses on the fair allocation of risks and burdens (Castro, 2019; Jorgensen, 2022). In the computer sci-
ence literature, some have suggested that further screening or collecting more data about select groups 
can improve the fairness performance of predictive algorithms (Chen, Johansson, and Sontag, 2018; Cai, 
Gaebler, Garg, and Goel, 2020). We are sympathetic with these approaches, but our analysis differs in 
two ways. First, we are not advocating that only select groups be subject to further screening or data 
gathering as this may increase surveillance of already marginalized communities. Second, we are inter-
ested in examining how conscientiousness impact the different performance criteria of algorithmic fair-
ness. As we will see, improvements in conscientiousness do not impact all performance criteria of fair-
ness equally (Sect. 3). This observation will then be the basis for an argument against classification parity 
(Sect. 5).
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to which performance measures, such as classification or predictive parity, deviate 
from conscientiousness.

Our contribution also helps to clarify the pragmatic point about trade-offs. 
It is sometimes asserted that there is a tension between accuracy and fairness: an 
improvement in accuracy can be detrimental for fairness.17 In addition, the impos-
sibility theorems mentioned earlier demonstrate that a tension exists within fairness 
itself, among different criteria of fairness. If one wanted to satisfy all performance 
measures of algorithmic fairness, trade-offs will be inevitable. But the extent of this 
inevitability must not be exaggerated. If—as we will demonstrate—accuracy, con-
scientiousness and predictive parity go together, and classification parity is the out-
lier, the trade-offs between different measures of fairness as well as between fairness 
and accuracy become less pressing.

Our paper does not directly address questions of historical injustice and how 
the latter should inform our theorizing about algorithmic fairness. It is an under-
explored topic in the literature to what extent performance criteria such as 
classification and predictive parity reflect inequalities in society.18 This relationship 
is unlikely to be straightforward, however.19 More work certainly needs to be 
done, but our simulation study shows that the group for which the violation of a 
performance criterion is most detrimental is not fixed in advance. For example, a 
higher rate of false loan rejections may affect the group with higher prevalence of 
loan default or the group with a lower prevalence, where one or the other may be 
the disadvantaged group. So, given this variability, violations of algorithmic fairness 
criteria need not reflect in a systematic way patterns of structural inequalities across 
groups in society.

The plan is as follows. Section 2 provides the technical and conceptual backdrop 
of our investigation, specifically, the contrast between idealized and empirical risk. 
Section 3 describes the probabilistic model and the computer simulation. Section 4 
argues that performance criteria of fairness cannot be divorced from questions of 
conscientiousness. Section 5 argues that classification parity, a popular performance 
measure of algorithmic fairness, has limited significance. Section 6 discusses some 
complications, both conceptually and practically. Section  7 situates the notion of 

17 On the trade-off between accuracy and fairness, see Menon and Williamson (2018). Kearns and Roth 
(2019) discuss the concept of a Pareto frontier between accuracy and fairness.
18 The literature on causal criterion of algorithmic fairness has begun to address these questions, see e.g. 
Chiappa and Gillam (2018).
19 For one thing, group differences in prevalence—which drive in part violations of predictive and clas-
sification parity—are not necessarily due to structural injustice. There exist several layers of inequality 
that may exist in society. Some inequalities are certainly due to structural, historical injustices and dis-
crimination, but others may be less pernicious and due to differences in preferences or priorities among 
groups (Lee, Singh, and Floridi, 2021) At the same time, violations of fairness performance criteria 
could still cause harm even without historical conditions of structural injustice. Consider two commu-
nities whose wealth happens to be different, but not for reason of structural injustice. If a community 
experiences, say, a higher rate of false loan rejections, this difference in the long run may entrench their 
economic disadvantage. Or suppose the algorithm’s predictive accuracy is worse for one community 
compared to another. This will have negative reputational costs, for example, if one community is viewed 
as less capable of repaying loans.
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conscientiousness within the broader distinction between performance criteria and 
attitudinal criteria of algorithmic fairness.

2  Individual risk and its estimation

To predict an unknown fact about an individual, the decision maker who does not 
rely on their own hunches and intuitions can take advantage of a predictive algo-
rithm, also called—perhaps more appropriately—risk model. A risk model or pre-
dictive algorithm is an abstract, evidence-based representation of the correlations 
between certain features (attributes, traits, predictors) an individual may possess and 
an outcome of interest. To understand how predictive algorithms can make mistakes 
and why their performance can differ across groups, we pry open this conceptual 
construction to examine its inner workings.

We focus in particular on the degree of informational richness that is the basis of 
the algorithmic estimation of the risk ascribed to individuals.

We think of each individual as characterized by an infinite collection of 
measurable attributes, features or traits, denoted as X∞ = {X1,X2,…} . This infinite 
collection encompasses all information that ever exists about this person, including 
demographic, genetic, behavioral and psychological data at any given time point. 
This information can be so detailed to uniquely characterize an individual. That is, 
knowing X∞ is equivalent of knowing the individual, and indeed we will denote 
the individual as X∞ . The unknown binary outcome we wish to predict about the 
individual is denoted by Y. For example, Y may denote whether an applicant will 
default on their loan ( Y = 1 ) or not ( Y = 0).

Presumably, there exists an objective relationship between an individual’s 
attributes X∞ and the outcome Y. This relationship could in principle be captured by 
S∞ , the idealized risk score of the individual. More precisely, the idealized risk score 
is denoted by

where �∗
∞
= (�∗

1
, �∗

2
,…) is the ideal value of the (possibly infinite-dimensional) 

parameter, which governs in the finest detail the relationship between the idealized 
risk and the infinite set of attributes X∞ . The notation emphasizes the functional 
dependence of the idealized risk score on both X∞ and �∗

∞
 . In contexts where this 

dependence is not important, we simply write S∞ for short.
The idealized risk score (idealized risk, for short) is the best probabilistic 

description of the individual’s outcome Y. Once the value of the individual’s 
idealized risk has been learned, no additional information can be more indicative 
about the unknown value of Y. There is a distinction between two ways through 
which the modeler may conceptualize the meaning of the best probabilistic 
description, one deterministic and one stochastic. On the first conceptualization, the 
idealized risk S∞ is thought to track the outcome Y perfectly. That is, S∞ is either 
zero or one, and Y = S∞ . Had it been possible for the modeler to access the infinitely 
rich information about the individual, the modeler would know the outcome for 

S∞
(

X∞;�
∗
∞

)

,
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sure. By contrast, the stochastic conceptualization stipulates that, while there is 
nothing more that can be learned about Y beyond S∞ , knowing its value still does 
not allow us to pin down the outcome with certainty. In other words, there is some 
randomness in the individual’s outcome that just cannot be fully tamed. Under this 
conceptualization, S∞ is a probability whose value is anywhere between zero and 
one.20 For most of the paper, we will assume the deterministic conceptualization, 
but discuss the implications of the stochastic one toward the end.

Regardless of the conceptualization of the idealized risk, the infinitely detailed 
attribute collection X∞ remains a hypothetical construction. In reality, only a finite 
subset of the content of X∞ can be accessed, say p dimensions of it. Denote the 
finite accessible information about an individual by Xp . The dimensionality p may 
reflect the practical limitation of how much information can be collected about 
an individual or the modeler’s intention to include only certain attributes that are 
deemed admissible. For all individuals who share the same accessible information 
Xp , the modelers supplies an estimated empirical risk, denoted by Ŝp . More precisely,

or Ŝp for short, whenever the dependence on its arguments Xp and �̂�p may be 
suppressed. For a binary outcome Y, the empirical risk Ŝp is a fractional number 
between zero and one, with a larger value suggesting Y = 1 as more likely.

To carry out the estimation of individual risk in practice, the modeler must engage 
in the postulation, fitting, and selection among a collection of candidate risk models. 
To do so, they must operate within realistic bounds of their domain knowledge, 
available information, and computation capacities. So, throughout this process, 
they have several practical choices to make. They must determine the appropriate 
dimension p, what we will call the informational richness of Xp . They must also 
determine the functional form of the risk model to be used alongside the input Xp . 
Typically, the risk model is assumed to belong to a family of functions, to allow for 
a good approximation to the idealized individual risk. The family from which the 
risk model is chosen is capable of capturing increased complexity as the richness of 
the attribute set Xp increases, while commanding a larger parameter space as well. 
Lastly, the value of the parameter that governs the function must also be determined. 
The hat notation in Ŝp signifies we are dealing with estimates from the observed data 
that bear variability due to the data collection process.

We take this conceptual framework to be relatively uncontroversial. The upshot 
here is that the objective of algorithmic prediction is to approximate, in the best way 
possible, the idealized individual risk (the objective risk that each individual will do 
this or that) by means of the empirical individual risk (the risk that each individual 
will do this or that based on the information and modeling assumptions available).

In light of this conceptual framework, it is instructive to revisit an example 
by Brian Hedden (2021). This example is part of an argument against nearly 

Ŝp
(

Xp;�̂�p
)

,

20 What’s implied of the relationship between Y and S∞ is also weaker than the equality relationship, but 
one reasonable requirement is that the idealized risk satisfies absolute calibration: P(Y = 1 ∣ S∞) = S∞ , 
where the probability P reflects the untamed randomness inherent in the outcome Y.
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all performance criteria of algorithmic fairness. Hedden describes a scenario 
in which each person is given a biased coin, reflecting their objective risk (say, 
for concreteness, the person’s objective risk of committing a crime). Suppose a 
predictive algorithm can faithfully track the objective risk of each person and in this 
way can assign an equivalent risk score. There is no mismatch between objective 
risk and the algorithm’s risk score. By thresholding the risk score at some value, 
the algorithm can make binary predictions about the outcome. But now suppose 
people are sorted into two rooms, and it just so happens that the distributions of 
the objectives risks (and thus of the algorithm’s risk scores) across the two rooms 
are different. As a consequence, the algorithm’s rates of false positives and false 
negatives across the two rooms—so long as the same threshold is used—will differ. 
Classification parity is thus violated. Since the objective risk distributions differ 
across the two rooms, predictive parity will also be violated for analogous reasons.21 
Hedden points out that such violations of classification and predictive parity do not 
make the algorithm unfair. Hence, these criteria cannot be criteria of fairness.

Some have objected to this argument because it is artificial and removed from 
the practice of algorithmic predictions.22 We think this criticism is well-founded, 
but we also agree with Hedden that the algorithm in the scenario is intuitively fair. 
Why, exactly, should we think so? Hedden appeals to our intuitions. But there is 
a more principled answer: the predictive algorithm in the example does what it is 
supposed to do in the best way possible and does that equally well across every 
single individual. The algorithm has all the information it can possibly have about 
each individual, and that information is contained in a perfect approximation of 
the objective bias of the coin, what we called the idealized individual risk. So the 
empirical risk is the same as the idealized risk, for each individual. The predictive 
algorithm can do no better. That is why we judge it to be fair.

Still, there is no denying that Hedden’s scenario has limited significance 
because it is artificial. There are at least two reasons for that. First, the distribution 
of the coin biases just so happens to be different across groups and is assumed to 
be causally irrelevant. That the distribution of the biases is different across the 
two groups—different rooms in Hedden’s story—is key to bring about violations 
of most fairness criteria, but is also irrelevant for everything else.23 In reality, the 

21 Hedden’s argument does not assume that the people in the two rooms have different base rates. The 
distribution of their risks is assumed to be different, however. This fact then triggers a violation of the 
performance criteria of fairness. This is a consequence of the problem of inframarginality; see footnote21.
22 For a more extensive critique, see Vigano’ et al. (2022).
23 Another scenario in the philosophical literature, due to Robert Long (2021), makes a similar assump-
tion. Suppose you are an undergraduate student in a large course. For the purpose of grading your home-
work, you could be assigned to section I or section II. Homework is graded exactly in the same way in 
the two sections, but it just so happens that the base rate of true A papers is higher in section I than sec-
tion II.  If the predictive accuracy of the grades is the same across sections, the rate at which true A 
papers are correctly graded will differ across the two sections. So there will be a disparity in classifica-
tion errors across the two sections. But, Long argues, this disparity should not raise fairness concerns. 
Suppose, for concreteness, that true A papers in section II are incorrectly graded more often than in sec-
tion I. It would be odd for a student in section II to complain they were unfairly treated because true A 
papers were incorrectly graded in section II more often. Had the student been in section I,  they would 
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distributions of predictive features will differ across groups, and group membership 
is often causally implicated in this difference. Second, no algorithm can perfectly 
approximate the idealized individual risk and thus algorithms will usually rely 
on the empirical individual risk. Our discussion in what follows will remove the 
sources of artificiality just identified. We will ask the following question: how do 
fairness criteria such as classification and predictive parity perform in more realistic 
contexts—that is, assuming that (1) groups membership is causally relevant and (2) 
predictive algorithms rely on the empirical individual risk? The computer simulation 
in the next section will allow us to address this question.

Before moving on, a clarification about the need of relaxing the idealizations in 
Hedden’s example is in order. One might argue that if a certain criterion of fairness 
is shown to be inapplicable under idealized conditions, then a fortiori the same 
criterion would be inapplicable under more realistic conditions. But this argument 
is too quick. Even if—as Hedden has shown—predictive algorithms necessarily 
violate several performance criteria under idealized conditions and this violation is 
not intuitively unfair, the same violation under more realistic conditions may still 
count as unfair. For example, a predictive algorithm whose risk scores perfectly track 
the objective risks may count as intuitively fair even if it violates predictive parity. 
And yet, when the algorithm’s risk score no longer track the objective risks, the 
algorithm need not be regarded as intuitively fair. Under more realistic conditions, 
the violation of classification parity may become morally problematic.24

3  The simulation

We now turn to the computer simulation setup to mimic the mathematical setup 
introduced in the previous section.25 As already noted, an individual in principle 
possesses an infinite number of attributes that make up the specific individual they 
are. For the purpose of illustration, the simulated dataset represents each individual 
as possessing a finite number of observable and measurable attributes, (X1,… ,X20) , 
each taking different numerical values. While each individual is uniquely different 
in theory, under the assumed model for data generation, two individuals could well 
possess the same observed attributes due to their finite dimension.

3.1  Data generation

In the simulated population of individuals carrying different attributes, some will 
bring about the action or outcome we are interested in predicting—defaulting on 
a loan, committing a crime or developing a medical condition—whereas others 

24 For a similar point, see Lazar and Stone (2023).
25 The R code of the simulation is available with the authors.

have been graded in the same way. They would have gotten the same grade since being in one section or 
another is irrelevant for how students are graded. The counterfactual hold simply because group member-
ship is causally irrelevant.

Footnote 23 (Continued)
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will not. As a matter of fact, certain combinations of attributes give rise to the 
outcome of interest, while other combinations do not. To represent this, we presume 
a generative model for the idealized risk, which associates all the individual’s 
attributes to their outcome. This will be the oracle risk model for the simulation. The 
input to the generative model is a combination of values of the attributes, such as a 
certain level of income, a certain age, etc. The idealized risk S∞ is a deterministic 
function of the finite-dimensional X’s for fixed values of the parameter. The function 
encodes stronger or weaker contributing relationships between the attributes and the 
outcome. The generative model is chosen to be

where the X’s are the input attributes, Y the outcome, and �∗ ’s the coefficients 
governing the relative contribution of the attributes towards the uncertain outcome. 
That is, given a certain combination of values of the attributes, the function outputs 1 
or 0, which in turn determines the outcome. Here, the function between the idealized 
risk and the outcome is assumed to be deterministic: any two individuals possessing 
the same combination of attributes will either both bring about the outcome (value 
1) or not (value 0).26

3.2  Group disparities

For simplicity, we are assuming there are only two groups we are interested in, 
labelled generically group 0 and group 1. In the simulation, group membership is 
not one of the attributes (independent variables) used to generate the outcome. The 
correlation coefficients associated with the attributes are the same for individuals 
in both groups. The model generating the outcome is, in this sense, group-blind. 
Despite that, the prevalence of the outcome of interest (say criminal activity, loan 
defaulting or medical condition) still differs across groups in the simulation. Even 
if the process generating the outcome is group-blind, the simulated data show 
group disparities in the distribution of certain attributes and consequently in the 
distribution of the outcome of interest. This should not be surprising. In fact, it 
reflects a familiar pattern. Attributes such as income, education, age may contribute 
to bringing about a certain outcome. These attributes will also be correlated with 
protected attributes such as race or gender, even though race or gender need not be 
directly causally implicated in bringing about the outcome.

To model this setting, some attributes in the simulation depend on group mem-
bership, while others do not (Fig. 1). Thus, the shape of the distribution of the val-
ues of the group-dependent attributes differs by group, while it is the same for the 
group-independent attributes (Fig. 2). And since the distribution of certain attributes 

(1)S∞ = 1
(

Probit
−1
(

�∗
0
+ �∗

1
X1 +⋯ + �∗

20
X20

)

≥ 0.5
)

, Y = S∞,

26 Hedden in the coin example assumed that the relationship between idealized individual risk (the 
objective chance or bias of the coin) and outcome was stochastic. Each person was associated with a 
biased coin and the probability of the outcome was determined by the bias. But predictive algorithms 
need not be thought as working that way. The relationship between idealized risk and outcome can also 
be deterministic. Here we assume that the relationship is deterministic but relax this assumption later in 
the paper.
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is different across groups and the attributes influence the occurrence of the outcome, 
the two groups have different prevalence rates. So, in the simulation—and unlike 
Hedden’s hypothetical scenario—the difference in prevalence rates, is not a fortui-
tous fact. It is explained by differences in group-dependent attributes. 

3.3  Fitting the risk model(s)

Once the simulated data are given, we can make inferences from these data as is 
usually done in statistics and machine learning. In making inferences, we are 
attempting to recover to the extent possible the true generative model which, from 
the input attributes, returns the outcome via the correlation coefficients. To this end, 
we use probit regression to create our representation—the empirical model—of the 
true generative model. A common machine learning algorithm, probit regression is 
naturally suited to our task of predicting a binary outcome, such as defaulting on 
a loan or committing a crime. We train the probit model on a subset of simulated 
data, call it the training set. The fitting process finds the optimal coefficients for 
the model, in the sense that it chooses the parameter value that maximizes a pre-
determined objective function.27 The remaining part of our simulated data will be 
used to test our model, call it the test or validation set.28

In constructing the empirical risk model via probit regression, we considered 
a number of variations: number of attributes (or predictors); group-dependent vs 
-independent attributes; size of the training data; and possible mispecifications of 
the model. We fit a sequence of possible models, some consisting of none or just 
one true attribute as predictor, all the way to a model consisting of all true attributes. 
True attributes are those that, as a matter of fact, bring about the outcome of interest 
in the generative (oracle) model. We also fit a collection of models, each consisting 
of a varying number of predictors that are or are not correlated with group, arranged 
in a different order. We trained our models on training sets of difference sizes. We 
did not assume that the smaller data set is biased or distorted, only that it has fewer 
observations. Finally, we fit a collection of models that utilize partially mis-specified 
predictors.

27 For the probit regression model that we examine in this paper, the objective function is simply defined 
as the data likelihood, rendering maximum likelihood estimation that is guaranteed to consistently and 
asymptotically efficiently recover the true parameter values in our setting. Other definitions of the objec-
tive function, such as those incorporating regularization, may be employed in practice.
28 To make the simulation more realistic, we vary the composition of group 0 vs group 1 records in the 
training and the test datasets. In the training set, 60% of the records are from group 0, whereas in the test 
set, 40% of the records are from group 0. This mimics the possibility that the training and the test sets 
may over-sample or under-sample some of the groups, so that their sample composition departs from 
that of the population. Since this variation merely perturbs the group proportion and maintains the ratios 
between the positive versus negative outcomes within each group identical across the training and the 
test sets, it does not reflect an outcome-biased sampling scheme and does not constitute an instance of 
distorted data.
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4  Performance criteria and conscientiousness

What do we learn from the simulation? A number of trends emerge. First, 
informational richness goes hand in hand with predictive accuracy. The more true 
predictors are used by the risk model, the more accurate the risk model (Fig.  3). 
Accuracy here refers to the “closeness” between the actual value of the individual 
risk that is assumed to exist, and the algorithm’s best judgment of its value.29 We 
take informational richness to be an indicator of how many true predictors were 
used in the risk model.30 This is a simplification, but is the most salient way to 
track conscientiousness under the chosen simulation setting. We should note that 
the seemingly obvious observation that informational richness correlate positively 
with accuracy shall not be taken for granted. Indeed, an increase in accuracy with 
increasing data is not automatically obtainable for every risk model, but only for 
those models that are well-designed and thoughtfully estimated (more on this in 
Sect. 6).

The second trend is that, the more accurate the risk model, the better its perfor-
mance in terms of predictive parity, one of the key formal criteria of algorithmic 
fairness (Fig.  4). Recall that predictive parity requires that the fraction of correct 
algorithmic predictions be the same across the relevant groups of interest. Thus, 
we see a strong monotonic trajectory that is common to three different indicators: 
greater informational richness means better accuracy as well as better fairness if the 
latter is understood as predictive parity. This monotonic trend exists assuming sev-
eral idealizations as part of the simulation, for example, that all predictors are true 
predictors of the outcome of interest.

The outlier here is classification parity, another popular measure of algorith-
mic fairness. So the third trend that emerges from the simulation is that classifica-
tion parity behaves erratically. Recall that classification parity, unlike predictive 
parity, requires that the rate at which people are correctly classified as ‘positive’ 
or ‘negative’ be the same across groups. Classification parity does not monotoni-
cally improve as a result of better accuracy and richer information. It is achieved 
when the risk model relies on no predictors at all and consequently when the 

29 A specification of a loss function is the standard procedure to measure accuracy. The loss function 
embodies the assessment of closeness between the risk model S and the true outcome Y it is intended 
to predict. As risk models are often probabilistic in nature, the loss function to examine is an expected 
predictive loss. Thus, the assessment of closeness are usually defined using the language of expectation:

where the expectation may be taken over many sources of uncertainties. A common choice of the loss 
function is the squared error loss, L(a, b) = (a − b)2 . The squared differences for each prediction are 
summed and divided by the total number of predictions (or the total number of individuals about whom a 
prediction is made). This computation gives the average squared error loss. The lower the loss, the more 
accurate the model. The square error loss is known as the Brier score. It is a strictly proper scoring rule, 
and is the loss function employed in this paper. There are other choices of loss functions that may be 
particularly indicative of model performance in different contexts, such as the Area Under Curve (AUC) 
or the Matthew correlation coefficient.
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30 Recall that true attributes are those that, as a matter of fact, bring about the outcome of interest in the 
generative (oracle) model.
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model’s accuracy is at its worst. Tossing a fair coin to decide how to classify indi-
viduals would always deliver classification parity. Classification parity can also 
be achieved with full information and perfect accuracy. As we learn from our 
simulation, however, anything between full and null information fails to deliver 
classification parity. But, unlike predictive parity, adding more predictors may 
reduce classification parity in some cases and improve it in other cases (Fig. 5).

These trends show that achieving classification parity conflicts with the 
objective of achieving an accurate prediction of the outcome of interest. The 
same conclusion does not hold for the other metrics of fairness performance, in 
particular predictive parity. This fact is a good reason to be wary of classification 
parity as a measure of algorithmic fairness. We will spell out an argument to 
this effect in the next section. But before doing that, it is paramount to situate 
performance criteria of fairness in relation to what we have been calling 
conscientiousness and informational richness.

Conscientiousness is a function of all aspects that are under the control 
of those in charge of constructing the risk model. One salient aspect of 
conscientiousness is the number of true predictors used in the risk model, what 

Fig. 1  Graphical representation of the data generating mechanism of the simulation study. The arrows 
indicate the order of simulation. S stands for the idealized risk score based on all the attributes that make 
up an individual. The same graph can be used to guide the appropriate specification of the risk model 
class, in which case S may also stand for the empirical risk score

Fig. 2  The empirical distributions of the standardized values of a group-dependent feature (left) and a 
group-independent feature (right), plotted by group membership
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we have called informational richness. Another aspect is the representativeness 
of the data. A third aspect still is the selection of the appropriate model along 
with its parameters. For simplicity, we focus on informational richness, keeping 
in mind that this is just one dimension of conscientiousness. This perspective 
affords us a new reading of what is going on in some of the counterexamples in 
the philosophical literature against performance criteria of fairness.

Recall Hedden’s example in which people are assigned coins with different 
biases (the objective risk) and the predictive algorithm assigns risk scores to each 
person based on these biases. Hedden shows that playing with differences across 
two groups of interest—differences in the distribution of objective risks or differ-
ences in prevalence—is enough to ensure that many performance measures are 
violated (see earlier discussion in Sect.  2). But this observation also works in 
the other direction: playing with differences across groups can ensure that cer-
tain performance measures are satisfied. For suppose a credit algorithm violates 
equality of false positive classification across two groups, say, group G = 1 has a 
higher rate of false positives than G = 0 . To correct this disparity, a bank decides 
that the pool of applicants from G = 1 should include more people who are credit-
worthy and who can be easily classified as such, thanks to characteristics such as 

Fig. 3  Out-of-sample predictive squared error loss as a function of the number of predictors. Models 
represented by the green curve use a large training set ( n = 105 ) with the correct predictor variables, for 
which the group-dependent and group-independent attributes are entered in a mixed order. Orange: same 
as green but a small training set ( n = 100 ) is used. Magenta: same as green but the group-independent 
attributes (12 in total) entered before the group-dependent attributes (8 in total). Purple: same as green 
but six of the predictors (circled) are mis-specified. The only empirical model that reaches perfect accu-
racy is represented by the last point on both the green and the magenta curves
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stable income and timely credit card payments. Because of this, the false positive 
rate for G = 1 will go down and be equalized to that of group G = 0 . The same 
manipulation can be carried out to ensure compliance or violation of other per-
formance criteria of fairness.

So, violating as well as satisfying performance criteria of algorithmic fairness 
sometimes comes relatively easily provided one artificially changes in the right 
way the composition of the two groups being compared. When these artificial 
changes are made, fairness criteria of performance appear to be divorced from our 
intuitions about fairness. After all, ad hoc manipulations should have no effect on 
the fairness of the algorithmic predictions. This is so—we hold—precisely because 
artificially changing the composition of the groups does not require an improvement 
in conscientiousness. Sometimes compliance with performance criteria of fairness 
is even obtained by openly disregarding conscientiousness. Consider calibration, a 
form of predictive parity. Suppose the prevalence rate of the outcome of interest 
in group G = 1 is 70% and only 40% in G = 0 . A predictive algorithm could 
assign a risk score of .7 to every person in G = 1 and .4 to every person in G = 0 . 
The algorithm would be calibrated, since the fraction of people who are actually 
positive in each group would correspond to the score assigned to them.31 But 
this calibration could hardly be indicative of a fair algorithm.32 It could not be 
indicative of fairness—we hold—precisely because the risk score was estimated in 
a coarse manner, most likely giving up information available, an open violation of 
conscientiousness.

Should we then give up on performance criteria of fairness and focus exclusively 
of conscientiousness? This would be too quick. As seen above, accuracy, 
conscientiousness and predictive parity go hand in hand. So an improvement along 
one dimension can be indicative of an improvement in another dimension. And 

Fig. 4  The predictive parity of the empirical risk models as measured in terms of the positive predictive 
value (PPV). Left panel: models are trained according to the standard simulation setup (green curve of 
Fig. 3) with a large training set and correct predictors entering into the model in a mixed fashion. Right 
panel: the group-dependent (but correct) features are excluded for the first 13 models

31 On the definition of calibration, see footnote 7.
32 A similar example was given by Corbett-Davies and Goel (2018) in a seminal paper on algorithmic 
fairness.
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sometimes compliance with performance criteria may be more easily verifiable than 
a multifaceted idea such as conscientiousness or informational richness. Still, if it 
is clear that no improvement in conscientiousness or accuracy has taken place, the 
improvement in predictive parity must be the result of a form of manipulation that 
has little to do with the fairness of the algorithm.

The case of classification parity is different, however. For compliance with this 
performance criteria may sometimes even require one to sacrifice conscientiousness 
and base one’s prediction on a smaller set of predictors. Unlike predictive parity, 
classification parity comes into open conflict with accuracy and conscientiousness. 
This is a strong reason to dispense with classification parity altogether. This is the 
topic of the next section.

5  Against classification parity

We consider two proposals for defending classification parity, and we find 
both of them unsatisfactory. First, classification parity might be an appealing 
criterion of algorithmic fairness insofar as it tracks the comparative probability 
of misclassification to which people from different groups are subject. On this 
interpretation, classification parity is bottomed in the expectation that people from 
different groups should have equal prospects of misclassification, where such 
prospect is understood as the probability of misclassification. That people in minority 
groups are more likely to be misclassified because of their group membership seems 
unfair, especially when a higher probability of misclassification translates into a 
higher risk of harm, such as being erroneously placed in preventative detention.

But deviations from classification parity do not necessarily entail an uneven 
allocation of the prospects of misclassification across individuals belonging to 
different groups of interest. Here, what we mean by ‘group’ is specifically the result 

Fig. 5  Classification parity as measured in terms of false positive rate, false negative rate and imbalance 
for the sequence of empirical risk models using a large training set and the correct predictors (left; cor-
responding to the green curve of Fig. 3) versus the partially misspecified predictors (right; corresponding 
to the purple curve). Classification parity is perfect only in two extreme scenarios: either the empirical 
model has perfect accuracy (rightmost point in left figure) or the worst accuracy (baseline; leftmost point 
in both left and right figures)
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of applying a protected category such as race or gender. Take an individual in a 
minority group and compare this individual with another who possesses the same 
predictive features but belongs to a non-minority group. These two individuals will 
be treated the same, either correctly classified or not. This is just how algorithms 
work: people with the same predictive features are treated the same. So one 
individual would not be more likely to be misclassified than the other, even though 
they belong to different groups.33

In the aggregate, as our simulation shows, individuals in one group will be more 
or less often misclassified than individuals in another group, assuming the base rates 
of the outcome of interest differ between the two groups. Thus, one might argue that, 
because of these differences in the frequency of misclassification, the individuals 
in one group are more likely to be misclassified than the individuals in another 
group. But, crucially, these judgments of probability hold for average individuals 
who are described not by the full set of features available to characterize them. The 
assessment of the probability of misclassification should instead be relative to the 
most specific description available to the algorithm. This description will not be 
uniquely individualizing, but will likely include both group-dependent and group-
independent predictive features. In this case, individuals who belong to different 
groups and are otherwise similar under the most specific description cannot be 
subject to uneven prospects of misclassification.

In response, some might object that this argument looks at classification 
parity too narrowly, in isolation from the larger trends in society. Violations 
of classification parity can very well be an indication of antecedent group-
based systemic disadvantage —that people who are worse-off are deprived of 
opportunities even when they should not be. Suppose, for the sake of illustration, 
that black people described at the most individualized level from the perspective of 
the predictive algorithm—say, viewed in light of their income, health, education—
are not subject to a higher probability of false loan rejection compared to similarly 
situated white people. And yet, suppose black people on average—not described 
at most individualized level—have a higher probability of false loan rejection. A 
plausible explanation for this violation of classification parity is that black people 
at an antecedent stage of life had lower chances to have access to adequate income, 
education, health care. These lower chances are reflected into higher rates, on 
average, of false loan rejections against black people compared to white people.

The above illustration suggests that, far from being morally irrelevant, violations 
of classification parity reflect larger disparities in societies. But how general is 
this phenomenon and does it follow a predictable pattern? Some have claimed that 
the group with higher prevalence—which, in some contexts, is the disadvantaged 
group—will suffer higher rates of false positives and lower rates of false negatives, 

33 Long (2021) makes the point that group differences in false positive rates do not track group differ-
ences in the risks (prospects) of error. To make this point, Long relies on a hypothetical case (see foot-
note 23) in which group membership is causally irrelevant to whatever features are used by the algorith-
mic to make its predictions. The argument here does not make this assumption. In our simulation study 
(see Sect. 3), group membership is causally implicated in bringing about some of the predictors used by 
the predictive algorithm.
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which may entail higher rates of police stops, jail times, and mortgage rejections.34 
If the group subject to a higher rate of false positives and a lower rate of false 
negatives is the disadvantaged group, violations of classification parity would follow 
a predictable pattern that mirrors larger social inequalities.

Our simulation, however, shows a more complex picture. Depending on the type 
of predictors used by the algorithm—group-dependent or group independent fea-
tures—the group with higher prevalence may be subject to a lower rate of false posi-
tives and a higher rate of false negatives, as is apparent by comparing Figs. 5 and 6. 
So classification parity need not systematically mirror larger disparities in society. 
Perhaps the argument here is that classification parity matters because its violation 
tends to entrench historical injustices in societies along racial or gender lines. But 
note that classification parity is the conjunction of two requirements: equal false pos-
itive and equal false negative rates. Classification parity would be violated whether a 
minority group is subject to a higher or lower rate of loan false rejections. Arguably, 
only a higher rate would entrench injustices in access to credit to the detriment of a 
minority group. A lower rate of loan false rejections could actually disrupt historical 
injustices. In any event, a more careful analysis of the relationship between histori-
cal injustices and violations of classification parity is needed.

So, to summarize, we contend that classification parity, as a criterion of 
algorithmic fairness, should be given limited weight. Our claim rests on three 
observations. First, the simulation shows that pursuing classification parity, unlike 
predictive parity, is a somewhat erratic goal, as it may conflict with improving 
accuracy and informational richness. In addition, its erratic behaviour is paired with 
the fact that classification parity does not track any tangible disparity in the prospects 
of misclassification across individuals in different groups. Finally, as our simulation 
shows, violations of classification parity need not always go to the detriment of the 
disadvantaged group. They may entrench as well as disrupt historical injustices. So, 
the balance of reasons weighs against classification parity as an intuitively appealing 
criterion of algorithmic fairness.

We conclude this section by pointing out that—inevitably—predictive algorithms 
will subject people to uneven prospects of mistaken classification, but not in the way 
that violations of classification parity might suggest. This problem is pervasive, but 
we think it is best addressed by reasserting the centrality of informational richness.

Suppose we compare two groups of individuals: one group comprises people 
who possess all features that are positively correlated with the outcome and the 
other group comprises individuals who possess all features that are negatively 
correlated. Suppose we select only people from these two groups that will not bring 
about the outcome of interest, such as defaulting on a loan or committing a crime. 

34 For example, consider Northpointe’s answer in (Dieterich, Mendoza, and Brennan, 2016) to Pro-
Publica’s accusation in (Angwin, Larson, Mattu, and Kirchner, 2016) that COMPAS is racially biased. 
COMPAS is an algorithm used in several jurisdictions in the United States to make predictions about 
recidivism. Northpointe alleged that, since the prevalence of criminality among black people is higher, 
false positives will also be higher and false negatives will be lower. Long (2021) makes the same claim 
with the qualification that it holds if (a) the algorithm meets predictive parity and (b) it applies the same 
decision threshold for different groups.
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Still, because of the different features they possess, the people in one group will be 
incorrectly labeled as ‘positive’ and the others correctly labelled as ‘negative’. Thus, 
the people in the two groups are subject to uneven prospects of misclassification.35 
This disparity raises a fairness concern, but one that has little or nothing to do with 
violations of classification parity. The disparity at issue concerns individuals viewed 
at the most specific level of description available. The disparity cuts across protected 
categories and may occur within the same protected group.

The problem for predictive algorithms just identified stems from the reliance 
on correlations between a select set of features and an outcome. Some individuals 
who are factually negative will be indistinguishable—from the point of view of 
the algorithm—from some factually positive individuals and thus the algorithm 
will classify them the same. This problem can be avoided by increasing the 
ability of the predictive algorithm or risk model to distinguish between otherwise 
indistinguishable individuals. A more fine-grained set of predictors could tame the 
unavoidable fact that certain individuals, described in the most specific way, are 
subject to uneven prospects of misclassification. But such refinement might not 
always be possible in practice, as we discuss in the next section.

6  Cautionary warnings

This paper focused on the centrality of informational richness and more generally 
conscientiousness. Risk models make predictions about individuals on the basis of 
a set of predictors. The greater informational richness, the greater the accuracy of 
the risk model, the greater its predictive fairness. So, informational richness is the 
engine that drives improvements in the performance of a predictive model, in terms 
of model accuracy and fairness. The results from the simulation make the centrality 
of informational richness vivid. The outlier here is classification parity whose 
performance is erratic.

But the centrality of informational richness should be qualified, and this final sec-
tion adds some cautionary warnings. The first warning is that there are two sources 
of uncertainty that predictive algorithms or risk models should attempt to contain: 

35 For an argument about uneven prospects of mistaken convictions in criminal trial and its implications 
for fairness, see Di Bello and O’Neil (2020). The argument (roughly) is this. Suppose, for example, there 
is profile evidence that shows that low socioeconomic status is positively correlated with the crime of 
drug trafficking. If you are on trial for drug trafficking and are of low socioeconomic status, should this 
profile evidence be introduced as evidence against you? It would seem unfair to present this evidence 
against you. One way to make sense of this unfairness is to realize the following fact: if you were inno-
cent, you would be mistakenly convicted with a greater probability than those of higher socioeconomic 
status against whom the same profile evidence could not be used as incriminating. After all, if the profile 
evidence were added to other evidence available against you at trial, this addition may tip the balance of 
the evidence in favor of a conviction. So, in this context, if you were an innocent facing trial, you would 
be more likely to be mistakenly convicted. The analogy with algorithmic predictions should be clear. 
They rest on a very sophisticated form of profile evidence that involves multiple correlations between 
certain features and an outcome of interest.
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(a) A risk model will not be entirely correct whenever not all true or relevant 
predictors are included in it or some of the predictors included in the model 
are not true or relevant predictors. Call this informational uncertainty. This 
uncertainty is progressively eliminated as the algorithm knows more and more 
aspects of what should be known.

(b) Another source of error for the predictions made by the risk model is data uncer-
tainty. Even if the data is unbiased and representative, it could still be too small 
to be used to construct a risk model that makes reliable predictions.36

These two sources of uncertainty form a trade-off. It is a good idea to base predic-
tions on as many true predictors as possible. This will reduce informational uncer-
tainty. Gathering more information is in principle always possible, but statistical 
inference faces an inescapable limit when it is applied to the behaviour of individu-
als. Even though the goal is to determine the risk this individual will do this or that, 

Fig. 6  If all true predictors that are correlated with group membership are excluded from the empiri-
cal model (the first 13 points on each curve), the group with a higher prevalence (here G = 1 ) receives 
a lower false positive rate and a higher false negative rate. This is a departure from classification parity, 
albeit in the opposite direction, compared to the models in Fig. 5 for which all predictors, true or other-
wise, enter in a mixed order regardless of their dependence on group

36 Another source of uncertainty is modeling uncertainty The model could be mis-specified, in the sense 
that it does not capture the structure of true data generating process. When this happens, even in absence 
of informational or data uncertainty, the risk model will fail to approximate perfect accuracy. See Fig. 3 
(orange line).
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the risk can only be statistically estimated by making comparisons and generaliza-
tions from features that are also shared by other individuals. Since any richer set of 
predictors will be instantiated by a smaller class of people, the reliability of these 
generalizations will also inevitably decline. So the more predictors, the smaller the 
sample size, the greater the data uncertainty.37

What are the implications of this trade-off between informational and data uncer-
tainty? There are some aspects of human decision-making that no predictive algo-
rithm can capture, not because data about them cannot in principle be collected, but 
rather, because there would not be enough data to make reliable predictions. Even 
our best picture could still fail to capture the world in all its complexity. It is possi-
ble, for all we know, that two people share the exact same attributes, and yet go on to 
bring about different outcomes.

To capture this practical and conceptual limitation of predictive algorithms, we 
amended the data generating process in the simulation. We have assumed thus far 
that the data generating mechanism is deterministic—that a specific set of features 
uniquely determines the outcome of interest and that the set of features, in its 
entirety, is knowable in principle. This setup assumes that predictive algorithms are 
capable of capturing the relationship between predictive features and outcome in 
the finest detail possible. But this assumption breaks down because of the trade-
off between informational and data uncertainty. So, we changed the data generating 
mechanism by stipulating that the relationship between predictive attributes and 
outcome is not deterministic, but governed by the flip of a weighted coin, where 
the probability of the outcome is a function of the attributes and the coefficients. 
Specifically, we revised the generative model in Eq.  (1) from Sect.  3 into the 
following:

According to the revised model, given two individuals exactly identical as far as 
what is knowable about them, the outcome of interest could still be different.38

We do not intend to suggest here that human decision-making is random or 
indeterministic. Rather, the stochastic data generating process makes vivid the 
realization that predictive algorithms are not capable—not even in principle—of 
capturing the relationship between predictive features and the outcome of interest 
in the finest detail possible. This incapability has a serious detrimental effect on 
algorithmic performance in terms of both accuracy and fairness. The simulation in 
its amended version shows that, once we give up the determinism assumption in 
how the data are generated, but maintain the same, correctly specified empirical risk 
model, every performance indicator on the side of fairness or accuracy deteriorates 
(Figs. 7 and 8 ).

(2)S∞ = Probit
−1
(

�∗
0
+ �∗

1
X1 +⋯ + �∗

20
X20

)

, Y ∼ Bernoulli(S∞).

37 This trade-off between informational and data uncertainty is also known as the bias-variance trade-off 
(Li and Meng, 2021).
38 Incidentally, Hedden’s scenario in which each individual is associated with a coin whose bias repre-
sents the objective chance for the individual of bringing about the outcome assumes a stochastic relation-
ship between predictive attributes and outcome.
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So, on the assumption of a stochastic relationship between predictive attributes 
and outcome, even predictive algorithms that perfectly approximate the objective 
risk will inevitably exhibit disparities in performance across groups. Call this base-
line performance disparity. We can draw a moral from this fact. Instead of insisting 
on compliance with fairness performance measures in the absolute, aiming to pro-
gressively approximate the baseline performance disparity might be a more mean-
ingful objective. This can be done following informational richness. After all, it is 
still possible to progressively improve performance by adding more predictors, even 
though perfect parity in performance is never reached no matter how many true pre-
dictors are included.

The second cautionary warning is that information richness should not be simply 
equated with the amount of data, or types of data, that are available. If the risk model 
itself is not thoughtfully specified or carefully estimated, there is no guarantee that it 
would become more accurate with increasing amount of input data, even if the data 
are indeed informative. While a loss of accuracy resulting from more data may be par-
adoxical, models that suffer from it may be employed in practice, such as those that 
lack self-efficiency.39 Without self-efficiency, adding more data to the risk model may 
not improve the performance in terms of accuracy and fairness. Our simulation utilizes 
well-studied statistical models and estimation procedures that do no suffer from a lack 
of self-efficiency, but such a quality should not be taken for granted. In addition, we 
note that with respect to a given class of risk models, all additional predictors may not 
be true or relevant predictors. Some may be uncorrelated with the outcome of interest 
or even misleading. In our limited simulation analysis, adding misspecified predictors 
has zero net effect on predictive accuracy (Fig. 3). Neither accuracy improves nor does 
it worsen. One may be tempted to conclude that all else being equal, it is better to add 
additional predictors to the risk model, since in the worst case scenario they would 
simply have a zero net effect for predictive accuracy. But, everything else is not equal, 
as the additional costs of gathering larger datasets to sustain the same model quality, in 
terms of time, money or heightened intrusion into people’s privacy, are not negligible. 
The modeler must balance the trade-off between the costs of relying on additional pre-
dictors and their added value for accuracy and fairness.

These two cautionary warnings are strongly related. Conceptually, there is a 
limit to the number of predictors the risk model can rely on because datasets will 
be inevitably smaller the more predictors are used. Practically, the size of datasets 
will be constrained by costs, in terms of money, time and privacy. These caution-
ary remarks, however, should not detract from the key message of our discussion: 
informational richness should take more prominence in the literature on algorithmic 
fairness.

39 Self-efficiency requires the model’s estimate to be more accurate when computed using the complete 
dataset. A model is not self-efficient if its estimate achieves a smaller mean squared error when applied 
to a subset of data selected from the complete data (Meng, 1994) Xie and Meng (2017) discuss cases in 
which the lack of self-efficiency arises in the context of multi-phase statistical inference.
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7  Conclusion

The argument in this paper mostly centered on how the informational richness of the 
predictors used by risk models affect performance criteria of accuracy and fairness. 
As seen in Sects. 3 and 4, the more true predictors are used, the better the accuracy 
and fairness of the algorithm, leaving aside classification parity for the reasons we 
give in Sect. 5. We conclude by sketching how informational richness can help to 
shed light on other notions of algorithmic fairness.

Besides performance criteria of fairness, we think that informational richness 
is also relevant to attitudinal criteria of algorithmic fairness, for example, the 
requirement that the same risk threshold be applied to different individuals belonging 
to different groups. Algorithms strictly speaking do not have attitudes, but the 
humans who design them and put them to use certainly do. Consider an algorithm 
who makes predictions about the risk of loan default. If people in some groups 
needed a lower risk threshold to qualify for a loan than people in another group, this 
would signal a prima facie difference in attitudes, say, that the costs of erroneous 
decisions were weighed differently for people in different groups.40 But this fairness 
criterion of ‘same threshold’ risks being an empty shell if it is not accompanied by 
another attitudinal criterion, what we might call equal conscientiousness. As a first 
pass, think of equal conscientiousness as the requirement that, across individuals 
belonging to different groups, the predictive algorithm relies on an equally rich set 
of predictive features. If different individuals were assessed by the algorithm with 
uneven conscientiousness—that is, using richer or poorer sets of predictors—this 
would signal a difference in attitudes toward them, as though some people were 
deserving a more careful risk assessment than others. This difference in attitudes 
would exist even if—nominally—the same risk threshold were still applied across 
groups. So the requirement of applying the same threshold is best accompanied by 
the requirement of equal informational richness.

But there is a further complication here. It might be appropriate to rely on a 
larger set of predictors for one group versus another insofar as these different 
sets of predictors perform equally accurately across the two groups. So equal 
conscientiousness might actually require reliance on different set of predictors. 
Recall that our simulation shows the following: the more true predictors, the 
more accurate the risk model. But it also shows that the speed of this monotonic 
improvement is not the same across groups. The same level of accuracy is reached 
via a smaller set of predictors for one group compared to another (Fig. 3). Given 
these differences in performance, equal conscientiousness might require that the 
predictive algorithm rely on a varying number of predictors depending on which 
group the individual who is the target of the prediction belongs to.

40 Same threshold is often taken for granted as a criterion of fairness. For an examination of this cri-
terion of algorithmic fairness, see Johnson King and Babic (2023). On the other hand, Aziz Huq Huq 
(2019) argues that, in some cases, fairness requires that same threshold be violated. Huq points out that 
people in minority groups may suffer greater harm as a result of a mistaken algorithmic classification, 
and when this is the case, the decision threshold should be more stringent for them.
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These remarks suggest that attitudinal criteria of fairness—such as equal 
threshold—should not be understood independently of performance criteria of 
accuracy and fairness. And—we hold—informational richness and conscientious-
ness can help to draw the relevant connections. But a more general examination 

Fig. 7  Predictive square error loss (yellow curve) of the sequence of empirical risk models fitted with 
the correct predictors, but with formula (2) as the data generative model. Here, the idealized risk score 
is a fractional number between [0, 1] and is no longer deterministically associated with the individual’s 
outcome Y. Even the best model (i.e. the model with all 20 true predictors) cannot achieve perfect accu-
racy. The green trajectory is the same as that in Fig. 3 and represents out of sample squared error for the 
deterministic scenario

Fig. 8  Classification parity (left) and predictive parity (right) for the sequence of empirical risk models 
fitted with the correct predictors with formula (2) as the generative model
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of the relationship between performance criteria and attitudinal criteria of algo-
rithmic fairness is left for another time.
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