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Privacy: a challenge in modern data curation

Modern data curators seek to meet two goals at once:

1. To disclose key statistics/use cases of the database, in accordance
with its legal, policy, and/or ethical mandates.

2. To protect the privacy of individuals with trust-worthy guarantees.
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For example, the U.S. Census Bureau bears the constitutional mandate to
enumerate the population every 10 years for apportionment. It is also

bound by Title 13 of U.S. Code to protect respondent confidentiality.
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The mechanism of differential privacy

A random function s, (x, r) is said to be
e-differentially private? if for all neighboring

databases (x, x’) and all possible state q,

Pr (sdp (x, r) =da | x)) S exp (e) .

/ —
Pr(sgp (x',7) =a| x
https://www.ons.gov.uk/peoplepopulationandcommunity
That is, differentially private mechanisms conceal the confidential data x
by infusing crafted noise r into the data product sq, for release:
X — sgp (x,7)

2Dwork et al. (2006). Calibrating noise to sensitivity in private data analysis. TCC (pp 265-284)



Differential privacy: benefits and challenges

v Provability: differential privacy guarantees are formal and verifiable;
v Transparency: The probabilistic specification of the privacy

mechanism can publicized without sabotaging the privacy guarantee.
> Statistical implication: transparency is necessary for drawing

principled inference from privatized data.?

How do we leverage the privacy mechanism for statistical inference?

3G. (2022). Transparent Privacy is Principled Privacy. HDSR, Special Issue 2.



Situating our ( statistical x privacy ) framework

S e truth

Sdp | x ~ n(sdp | x)

» Infer x based on sgp;

» 7 is the only source of
uncertainty.

x is a sample

x[0~f(x|6)
Sdp | x ~ 77(3dp | x)
» Infer 6 based on sgp.

» Uncertainty stems
from n, f, and beyond
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x is a sample

x[0~f(x|6)
Sdp | x ~ 77(3dp | x)
» Infer 6 based on sgp.

» Uncertainty stems

from n, f, and beyond

design framework

Choose the best mechanism

(n) + estimator combo:*

édesign (S;p (x))

adjustment framework

For a given mechanism (7),

perform the best inference:

éadjust (sdp (x))

4Slavkovi¢ & Seeman. (2022). Statistical Data Privacy: A Song of Privacy and Utility. ArXiv:2205.03336.



Statistical inference from privatized data

Without privacy:
» Likelihood inference: £(6 | x) = f(x | 9);
> Bayesian inference: p(6 | x) o< p(0)f(x | 6).
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Existing solutions

Approximations:
> Asymptotic approximation (Wang et al., 2018)
» Variational approximation (Karwa et al., 2016)
» Parametric bootstrap (Ferrando et al., 2020)
Exact but limited:
> Integrate exactly (Awan & Slavkovi¢, 2018, 2020)
» MCMC with latent sufficient stat (Bernstein & Sheldon, 2018, 2019)

> Exact inference with approximate computation (Gong, 2019)

An efficient and user-friendly sampler for the exact posterior that

works for general choices of the data model f and the prior p.




A traditional Gibbs sampler
Problem #1: If n individuals each contribute d features, then
X=X

The likelihood may be intractable, and the posterior doubly intractable.

(0| sap) o< p(0) [ m(sap | X)f (x | 0) dx. ]
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jessicastringham.net

Problem #2: the conditional dist. x | 6, sq, is both f- and n-specific.



A general Metropolis-within Gibbs sampler

Solution. Propose x | 6 instead (or x; | 6 under conditional independence):

One lteration of the privacy-aware Metropolis-within-Gibbs sampler

1: update 0 | x
2:f0l‘i:1’“.’ndo
3 propose x; | 0
4 accept x;" with probability
alxf | xix-i,0) = mm{w, 1}

77(3dp | X, x_)
5: end for
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Solution. Propose x | 6 instead (or x; | 6 under conditional independence):

One lteration of the privacy-aware Metropolis-within-Gibbs sampler

1: update 0 | x
2:f0l‘i:1’“.’ndo
3 propose x; | 0
4 accept x;" with probability
alxf | xix-i,0) = mm{w, 1}

n(sap | xi, x_;)
5: end for

If 7 is e-DP, then for all 8, x_;, x; and x}':

(x| xi, x_;,0) > exp(—e).

As € decreases (more privacy), acceptance rate «

agu

increases (more computational efficiency)! eg fore=1,a > 36.7%.
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Requirements, run time, and efficiency

The proposed sampler requires:
> Assumption 1. The analyst knows how to sample the posterior if the

data aren’t privatized, i.e. she has a Markov kernel targeting p(6 | x).
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Requirements, run time, and efficiency

The proposed sampler requires:
> Assumption 1. The analyst knows how to sample the posterior if the
data aren’t privatized, i.e. she has a Markov kernel targeting p(6 | x).
Furthermore, if we have
> Assumption 2 (Record Additivity). The privacy mechanism can be
written as 1(sgp | x) = g (sdp, Yo i, sdp)) for some known and

tractable functions g, 1, . .., t,, then:

The Gibbs sampler requires O(n) number of operations to update

the full latent database according to p(x | 6, sgp).

Note:
» Even without privacy, one round of an MCMC procedure typically
takes O(n) time;
» Many commonly used DP mechanisms satisfy record additivity.

e.g. additive, exponential mechanism, objective perturbation, etc.

11/18



Ergodicity of the proposed sampler

Under the conditions

A1 the prior distribution is proper and p(6) > 0 for all § in
© = {0 fo(x) > 0 for some x};

A2 the model is such that the set {x : f(x | §) > 0} does not
depend on 6; and

A3 the privacy mechanism satisfies 7)(sg | x) > 0 for all x € X",

the Metropolis-within-Gibbs sampler on the joint space (X" x O) is

ergodicand it admits p(x, 0 | sqp) as the unique limiting distribution.

Furthermore, if one can directly sample from p(6 | x), then the resulting
(x,0) chain as well as the marginal chains are geometrically ergodic if there
exists 0 < a < b < oo such that a < f(x | #) < bforall # and x.



Application: a naive Bayes classifier

x = (x,...,xk) are features, each taking valuesin {1,..., Jx};
y €{1,...,I} is the class;

The non-private data consists of n i.i.d. copies of (x, y).

Goal: predict the class given the features: Pr(y | x).

The naive Bayes classifier assumes Pr(x | y) = ]_[Ik(:1 Pr(x | v);

vVvyVYyVvVvyYyy

Release the noisy counts: sg, = {nx + Laplace(2K/€) } .

1
n}y | ndy 2 [ n§) | n3, 2
TABLE 1
Sufficient statistics of the Naive Bayes model.

X1 Xo XK
1 2 1 2 1 2
" rurw | T . rara
2 [ phy | Py 2 [ pd Tpgz 2
ABLE

An ezample of the parameters of the Naive Bayes model for a 2 x 2 X K table.

Figure from Karwa et al. (2016)



Simulation setup

For the simulation, set
> N = 100 (number of samples);
I = 5 (number of classes);

K = 5 (number of features);

>
>
» Jx = 3 (number of options for each feature);
> cc{1,.3,1,3,10;

>

Prior for all parameters: Dirichlet(2, ..., 2).
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Posterior mean

» Fix a confidential dataset;
> Create 100 privatized datasets at each € value;
» Run one chain for each privatized dataset for 10,000 iterations;
> For each chain, calculate the posterior mean for p; = Pr(y = i).
p1 p2 p3 p4 p5
: 06 I i |
8
g 0.4 ‘ ! i
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g
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Frequentist coverage

Table. Frequentist coverage of a 90% credible interval for p; = Pr(y = i) at

different € values. 100 replicates per € value.

pr=.097 p,=.148 ps=.145 p, = .446 p; = .163

€

1 1 1 1 .36

3 .97 1 1 .59 1

1 .94 .99 .97 .83 .98
3 .95 91 .97 .89 .93
10 .92 .88 .94 .92 .9
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Empirical acceptance rates

» 100 chains at each € value;
» Each chain ran for 10,000 iterations;

» Minimum (orange) and mean (blue) acceptance rates for each chain.
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Summary

An MCMC framework for Bayesian inference from privatized data:

> Exact: targets the correct posterior distribution;

» General: applicable to a wide range of statistical models and privacy
mechanisms;

» User-friendly: mechanism independent, no (further) tuning

parameters.

the privacy-efficiency alignment

Smaller € implies higher acceptance rate: allowing the “free ex-

ploitation” of the privacy guarantee for computational efficiency.
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