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Privacy: a challenge in modern data curation

Modern data curators seek to meet two goals at once:

1. To disclose key statistics/use cases of the database, in accordance
with its legal, policy, and/or ethical mandates.

2. To protect the privacy of individuals with trust-worthy guarantees.

For example, the U.S. Census Bureau bears the constitutional mandate to
enumerate the population every 10 years for apportionment. It is also
bound by Title 13 of U.S. Code to protect respondent confidentiality.
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The U.S. Census Bureau adopts differential privacy

Harvard Data Science Review ( https://hdsr.mitpress.mit.edu )
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The mechanism of differential privacy

A random function sdp (x, r) is said to be
ε-differentially private2 if for all neighboring
databases (x, x′) and all possible state a,

Pr
!
sdp (x, r) = a | x

"

Pr
!
sdp (x′, r) = a | x′" ≤ exp (ε) .

https://www.ons.gov.uk/peoplepopulationandcommunity

That is, differentially private mechanisms conceal the confidential data x
by infusing crafted noise r into the data product sdp for release:

x −→ sdp (x, r)

2Dwork et al. (2006). Calibrating noise to sensitivity in private data analysis. TCC (pp 265-284)
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Differential privacy: benefits and challenges

! Provability: differential privacy guarantees are formal and verifiable;

! Transparency: The probabilistic specification of the privacy
mechanism can publicized without sabotaging the privacy guarantee.

◮ Statistical implication: transparency is necessary for drawing
principled inference from privatized data.3

How dowe leverage the privacymechanism for statistical inference?

3G. (2022). Transparent Privacy is Principled Privacy. HDSR, Special Issue 2.
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Situating our ( statistical × privacy ) framework

x is the truth

sdp | x ∼ η(sdp | x)

◮ Infer x based on sdp;

◮ η is the only source of
uncertainty.

x is a sample

x | θ ∼ f (x | θ)

sdp | x ∼ η(sdp | x)

◮ Infer θ based on sdp.

◮ Uncertainty stems
from η, f , and beyond

design framework

Choose the best mechanism
(η) + estimator combo:4

θ̂design
!
s∗dp (x)

"

adjustment framework

For a given mechanism (η),
perform the best inference:

θ̂adjust
!
sdp (x)

"

4Slavković & Seeman. (2022). Statistical Data Privacy: A Song of Privacy and Utility. ArXiv:2205.03336.
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Statistical inference from privatized data

Without privacy:

◮ Likelihood inference: ℓ(θ | x) = f (x | θ);
◮ Bayesian inference: p(θ | x) ∝ p(θ)f (x | θ).

With privacy:

◮ Themarginal likelihood integrates over X , the entire space of
confidential databases:

ℓ(θ | sdp) =
#

X
η(sdp | x)f (x | θ) dx.

◮ The (exact) Bayesian posterior distribution is

p(θ | sdp) ∝ p(θ)ℓ(θ | sdp).
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Existing solutions

Approximations:

◮ Asymptotic approximation (Wang et al., 2018)

◮ Variational approximation (Karwa et al., 2016)

◮ Parametric bootstrap (Ferrando et al., 2020)

Exact but limited:

◮ Integrate exactly (Awan & Slavković, 2018, 2020)

◮ MCMC with latent sufficient stat (Bernstein & Sheldon, 2018, 2019)

◮ Exact inference with approximate computation (Gong, 2019)

Our Goal

An efficient and user-friendly sampler for the exact posterior that
works for general choices of the data model f and the prior p.
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A traditional Gibbs sampler

Problem #1: If n individuals each contribute d features, then

X = Xn×d .

The likelihood may be intractable, and the posterior doubly intractable.

p(θ | sdp) ∝ p(θ)
$
X η(sdp | x)f (x | θ) dx.
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Problem #2: the conditional dist. x | θ, sdp is both f - and η-specific.
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A general Metropolis-within Gibbs sampler

Solution. Propose x | θ instead (or xi | θ under conditional independence):

One Iteration of the privacy-aware Metropolis-within-Gibbs sampler

1: update θ | x
2: for i = 1, . . . , n do
3: propose x∗i | θ
4: accept x∗i with probability

α(x!i | xi, x−i, θ) = min

%
η(sdp | x∗i , x−i)

η(sdp | xi, x−i)
, 1
&

5: end for
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5: end for

If η is ε-DP, then for all θ, x−i, xi and x∗i :

α(x!i | xi, x−i, θ) ≥ exp(−ε).

As ε decreases (more privacy), acceptance rate α
increases (more computational efficiency)! e.g. for ε = 1, α ≥ 36.7%.
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Requirements, run time, and efficiency

The proposed sampler requires:
◮ Assumption 1. The analyst knows how to sample the posterior if the

data aren’t privatized, i.e. she has a Markov kernel targeting p(θ | x).
Furthermore, if we have
◮ Assumption 2 (Record Additivity). The privacy mechanism can be

written as η(sdp | x) = g
!
sdp,

'n
i=1 ti(xi, sdp)

"
for some known and

tractable functions g, t1, . . . , tn, then:

The Gibbs sampler requires O(n) number of operations to update
the full latent database according to p(x | θ, sdp).

Note:
◮ Even without privacy, one round of an MCMC procedure typically

takes O(n) time;
◮ Many commonly used DP mechanisms satisfy record additivity.

e.g. additive, exponential mechanism, objective perturbation, etc.
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Ergodicity of the proposed sampler

Under the conditions

A1 the prior distribution is proper and p(θ) > 0 for all θ in
Θ = {θ | fθ(x) > 0 for some x};

A2 the model is such that the set {x : f (x | θ) > 0} does not
depend on θ; and

A3 the privacy mechanism satisfies η(sdp | x) > 0 for all x ∈ Xn,

the Metropolis-within-Gibbs sampler on the joint space (Xn×Θ) is
ergodic and it admits p(x, θ | sdp) as the unique limiting distribution.

Furthermore, if one can directly sample from p(θ | x), then the resulting
(x, θ) chain as well as the marginal chains are geometrically ergodic if there
exists 0 < a ≤ b < ∞ such that a ≤ f (x | θ) ≤ b for all θ and x.
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Application: a naïve Bayes classifier

◮ x = (x1, . . . , xK) are features, each taking values in {1, . . . , JK};
◮ y ∈ {1, . . . , I} is the class;
◮ The non-private data consists of n i.i.d. copies of (x, y).
◮ Goal: predict the class given the features: Pr(y | x).
◮ The naïve Bayes classifier assumes Pr(x | y) =

(K
k=1 Pr(xk | y);

◮ Release the noisy counts: sdp = {nijk + Laplace(2K/ε)}ijk .

Figure from Karwa et al. (2016)
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Simulation setup

For the simulation, set

◮ N = 100 (number of samples);

◮ I = 5 (number of classes);

◮ K = 5 (number of features);

◮ JK = 3 (number of options for each feature);

◮ ε ∈ {.1, .3, 1, 3, 10};
◮ Prior for all parameters: Dirichlet(2, . . . , 2).
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Posterior mean

◮ Fix a confidential dataset;

◮ Create 100 privatized datasets at each ε value;

◮ Run one chain for each privatized dataset for 10,000 iterations;

◮ For each chain, calculate the posterior mean for pi = Pr(y = i).
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Frequentist coverage

Table. Frequentist coverage of a 90% credible interval for pi = Pr(y = i) at
different ε values. 100 replicates per ε value.

ε p1 = .097 p2 = .148 p3 = .145 p4 = .446 p5 = .163
.1 1 1 1 .36 1
.3 .97 1 1 .59 1
1 .94 .99 .97 .83 .98
3 .95 .91 .97 .89 .93
10 .92 .88 .94 .92 .9
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Empirical acceptance rates

◮ 100 chains at each ε value;

◮ Each chain ran for 10,000 iterations;

◮ Minimum (orange) and mean (blue) acceptance rates for each chain.
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Summary

An MCMC framework for Bayesian inference from privatized data:

◮ Exact: targets the correct posterior distribution;

◮ General: applicable to a wide range of statistical models and privacy
mechanisms;

◮ User-friendly: mechanism independent, no (further) tuning
parameters.

the privacy-efficiency alignment

Smaller ε implies higher acceptance rate: allowing the “free ex-
ploitation” of the privacy guarantee for computational efficiency.

18 / 18



Thank you
Awan, J., & Slavković, A. (2018). Differentially private uniformly most powerful tests for binomial data. In

Advances in neural information processing systems 31 (pp. 4208–4218). Curran Associates, Inc.

Awan, J., & Slavković, A. (2020). Differentially private inference for binomial data. Journal of Privacy and
Confidentiality, 10(1).

Bernstein, G., & Sheldon, D. R. (2018). Differentially private bayesian inference for exponential families.
Advances in Neural Information Processing Systems, 31.

Bernstein, G., & Sheldon, D. R. (2019). Differentially private bayesian linear regression. Advances in Neural
Information Processing Systems, 32.

Ferrando, C., Wang, S., & Sheldon, D. (2020). General-purpose differentially-private confidence intervals.
arXiv preprint arXiv:2006.07749.

Gong, R. (2019). Exact inference with approximate computation for differentially private data via
perturbations. arXiv preprint arXiv:1909.12237.

Karwa, V., Kifer, D., & Slavković, A. (2016). Private posterior distributions from variational approximations.
NIPS 2015 Workshop on Learning and Privacy with Incomplete Data and Weak Supervision.

Wang, Y., Kifer, D., Lee, J., & Karwa, V. (2018). Statistical approximating distributions under differential
privacy. Journal of Privacy and Confidentiality, 8(1).

Ju, Awan, G., & Rao. (2022). Data Augmentation MCMC for Bayesian Infer-

ence from Privatize Data.5 ArXiv:2206.00710.

5ruobin.gong@rutgers.edu. Gong and Rao thank the NSF for research support.
18 / 18


