A Gibbs sampler for a class of random convex polytopes

Ruobin Gong (Rutgers University)

BFF 6.5 Virtual Workshop Feb 5, 2021

Joint work with Pierre Jacob \cdot Paul Edlefsen \cdot Art Dempster

	Distributional Inference	Functional Inference
	$x \mid \theta \sim P_{\theta}$	$x = G(u, \theta), u \sim P_0$
Precise	classic Likelihood and	Structural inference (Fraser, 1968)
Probability	Bayesian inference	Functional models (Dawid & Stone, 1982)
		Generalized Fiducial inference
		(Hannig et al., 2016)
Imprecise	Robust Bayes (Berger, 1994)	Dempster-Shafer theory
Probability	Robust statistics	(Dempster, 1968; Shafer, 1976; Dempster, 2008)
$(\underline{P}, \overline{P})$	(Huber & Ronchetti, 2009)	Inferential models (Martin & Liu, 2015)

Dempster-Shafer theory

Dempster-Shafer theory

$$x = G(u, \theta)$$

Dempster-Shafer theory

$$x = G(u, \theta)$$

$$\downarrow$$

$$\theta = G^{-1}(u, x)$$

The inversion may yield a set-valued mapping: $G^{-1}(\cdot,x):\Delta \to 2^{\Theta}$.

Dempster's Rule of Combination

$$x_1 = G_1(\theta, u_1)$$
 \vdots
 $x_N = G_N(\theta, u_N)$
 \longrightarrow

$$\begin{cases} \theta \in G_1^{-1}(x_1, u_1) \\ \vdots \\ \theta \in G_N^{-1}(x_N, u_N) \end{cases}$$

The **random set** that characterizes post-data inference for θ is

$$\mathcal{F}(\mathbf{u}) = \{ \theta \in \Theta : \forall n \in [N], \ x_n = G_n(\theta, \mathbf{u}_n) \},$$

where $\mathbf{u} \sim \nu_{\mathbf{x}}$, the uniform distr. on the \mathbf{x} -dependent feasible subset

$$\mathcal{R}_{\mathbf{x}} = \left\{ (u_1, \dots, u_N) \in [0, 1]^N : \exists \theta \in \Theta \ \forall i \in [N] \ x_n = G_n^{-1}(u_n, \theta) \right\}.$$

Challenge: How to efficiently sample $\mathcal{F}(\mathbf{u})$?

Categorical distribution inference

For
$$n \in [N]$$
, $x_n \stackrel{iid}{\sim} \mathsf{Categorical}(\theta)$ with $\theta = (\theta_k)_{k \in [K]}$. i.e.,

$$\mathbb{P}(x_n = k) = \theta_k, \quad \forall n, k.$$

Categorical distribution inference

For
$$n \in [N]$$
, $x_n \stackrel{iid}{\sim} \mathsf{Categorical}(\theta)$ with $\theta = (\theta_k)_{k \in [K]}$. i.e.,

$$\mathbb{P}(x_n = k) = \theta_k, \quad \forall n, k.$$

Subsimplex $\Delta_k(\theta)$, for $\theta \in \Delta$:

$$\{z \in \Delta : \forall \ell \in [K] \ z_{\ell}/z_{k} \ge \theta_{\ell}/\theta_{k}\}.$$

Categorical distribution inference

For $n \in [N]$, $x_n \stackrel{iid}{\sim} \mathsf{Categorical}(\theta)$ with $\theta = (\theta_k)_{k \in [K]}$. i.e.,

$$\mathbb{P}(x_n = k) = \theta_k, \quad \forall n, k.$$

Subsimplex $\Delta_k(\theta)$, for $\theta \in \Delta$:

$$\{z \in \Delta : \forall \ell \in [K] \ z_{\ell}/z_{k} \ge \theta_{\ell}/\theta_{k}\}.$$

Sampling mechanism, for $\theta \in \Delta$:

- draw u_n uniform on Δ_n ,
- define x_n such that $u_n \in \Delta_{x_n}(\theta)$, i.e., $x_n = G(\theta, u_n)$.

Then,
$$\mathbb{P}(x_n = k) = \text{Vol}(\Delta_k(\theta)) = \theta_k$$
.

Counts: (2,3,1). Let's draw N=6 uniform samples on Δ .

Each u_n is associated to an observed $x_n \in \{1, 2, 3\}$.

If there exists a feasible θ , it cannot be just anywhere.

Each category's samples add constraints on θ .

All constraints either define a polytope for θ , or an empty set.

This polytope contains θ values s.t. $\forall n \in [N], \ x_n = G(u_n, \theta)$. It is one realization of $\mathcal{F}(\mathbf{u})$.

Any $\boldsymbol{\theta}$ in this polytope separates the samples appropriately.

Let's try again with fresh uniform samples on Δ .

Here, there is no $\theta \in \Delta$ such that $\forall n \in [N], \ x_n = G(u_n, \theta)$. This draw does not constitute a realization of $\mathcal{F}(\mathbf{u})$.

Proposal: Gibbs sampler

The idea is to start from an arbitrary $\mathbf{u} \in \mathcal{R}_{\mathbf{x}}$, and iteratively sample some component (u_n) given others.

To this end, we need a characterization of $\mathcal{R}_{\mathbf{x}}$ in terms of \mathbf{u} . 100 polytopes drawn from the proposed sampler for counts (9,8,3):

Monte Carlo post-data inference

For a set $B \subset \Delta$ of interest, lower and upper probabilities

$$\underline{P}(B \mid \mathbf{x}) = \int \mathbb{1} \left(\mathcal{F}(\mathbf{u}) \subseteq B \right) \nu_{\mathbf{x}} (d\mathbf{u})
\dot{=} \frac{1}{T} \sum_{t \in [T]} \mathbb{1} \left(\mathcal{F}\left(\mathbf{u}^{(t)}\right) \subseteq B \right),
\overline{P}(B \mid \mathbf{x}) = \int \mathbb{1} \left(\mathcal{F}(u) \cap B \neq \emptyset \right) \nu_{\mathbf{x}} (d\mathbf{u})
\dot{=} \frac{1}{T} \sum_{t \in [T]} \mathbb{1} \left(\mathcal{F}\left(\mathbf{u}^{(t)}\right) \cap B \neq \emptyset \right).$$

Example. Counts:
$$(7, 5, 8)$$
, $\hat{\theta}_1 = 0.35$,
$$\frac{\hat{P}}{\hat{P}}(0.3 \le \theta_1 \le 0.4 \mid \mathbf{x}) = 0.2,$$

$$\hat{\overline{P}}(0.3 \le \theta_1 \le 0.4 \mid \mathbf{x}) = 0.62.$$

$$(\textit{Sampling model}) \quad \mathbf{u} \in \Delta_{\pmb{k}}\left(\theta\right) \quad \Leftrightarrow \quad \theta_{\ell}/\theta_{\pmb{k}} \leq u_{\ell}/u_{\pmb{k}}, \ \forall \ell \in [K].$$

Denote

$$\eta_{k o\ell} = \min_{n\in\mathcal{I}_k} rac{u_{n,\ell}}{u_{n,k}},$$

and define $\eta_{k\to k} = 1$ for all $k \in [K]$. We can write

$$\mathcal{R}_{\mathbf{x}} = \left\{ \mathbf{u} \in \Delta^N : \exists \theta \in \Delta \quad \forall k, \ell \in [K] \quad \theta_{\ell} / \theta_k \le \eta_{k \to \ell} \right\}.$$

Counts: (9,8,3), \boldsymbol{u} in $\mathcal{R}_{\boldsymbol{x}}$.

Values $\eta_{k\to\ell} = \min_{n\in\mathcal{I}_k} u_{n,\ell}/u_{n,k}$ define linear constraints on θ .

What are the implications of $\mathbf{u} \in \mathcal{R}_{\mathbf{x}}$?

- There exists $\theta \in \Delta$ such that $\theta_{\ell}/\theta_k \leq \eta_{k \to \ell}$ for all $k, \ell \in [K]$.
- Then, for all k, ℓ ,

$$\frac{\theta_\ell}{\theta_k} \leq \eta_{k \to \ell}, \quad \text{and} \quad \frac{\theta_k}{\theta_\ell} \leq \eta_{\ell \to k}, \quad \text{thus} \quad \eta_{k \to \ell} \eta_{\ell \to k} \geq 1.$$

- If $K \geq 3$: for all k, ℓ, j ,

$$\eta_{\ell \to k}^{-1} \le \frac{\theta_\ell}{\theta_k} = \frac{\theta_\ell}{\theta_j} \frac{\theta_j}{\theta_k} \le \eta_{j \to \ell} \eta_{k \to j}, \quad \text{thus} \quad \eta_{k \to j} \eta_{j \to \ell} \eta_{\ell \to k} \ge 1.$$

- If
$$K \ge 4, 5, 6, \dots$$

Main result

if there exists $\theta \in \Delta$ such that $\theta_\ell/\theta_k \leq \eta_{k \to \ell}$ for $k, \ell \in [K]$ then

$$\forall L \in [K] \quad \forall j_1, \ldots, j_L \in [K] \quad \eta_{j_1 \to j_2} \eta_{j_2 \to j_3} \ldots \eta_{j_L \to j_1} \ge 1.$$

Claim: the reverse implication holds too. This would mean

$$\mathcal{R}_{\mathbf{x}} = \{ \mathbf{u} : \exists \theta \quad \forall k, \ell \in [K] \quad \theta_{\ell} / \theta_{k} \leq \eta_{k \to \ell} \}$$
$$= \{ \mathbf{u} : \forall L \in [K] \quad \forall j_{1}, \dots, j_{L} \in [K] \quad \eta_{j_{1} \to j_{2}} \eta_{j_{2} \to j_{3}} \dots \eta_{j_{L} \to j_{1}} \geq 1 \}.$$

i.e. $\mathcal{R}_{\mathbf{x}}$ is represented by relations among components (u_n) . From here we can work out conditional distributions under $\nu_{\mathbf{x}}$, leading to a Gibbs sampler.

Counts: (9,8,3). **u** is in $\mathcal{R}_{\mathbf{x}}$. Inequalities $\eta_{k\to\ell}\eta_{\ell\to k}\geq 1$ are shaded. Inequalities $\eta_{k\to j}\eta_{j\to\ell}\eta_{\ell\to k}\geq 1$ reflected by the common intersection.

An interesting connection to graphs

Consider a fully connected graph with K vertices, and with weight $\log \eta_{k \to \ell}$ on edge (k, ℓ) .

value of a path = sum of the weights of edges in the path cycle = path from a vertex to itself

An interesting connection to graphs

Consider a fully connected graph with K vertices, and with weight $\log \eta_{k \to \ell}$ on edge (k, ℓ) .

value of a path = sum of the weights of edges in the path

negative cycle = path from a vertex to itself with negative value

An interesting connection to graphs

$$\mathcal{R}_{\mathbf{x}} = \{\mathbf{u} : \forall L \in [K] \quad \forall j_1, \ldots, j_L \in [K] \quad \eta_{j_1 \to j_2} \eta_{j_2 \to j_3} \ldots \eta_{j_L \to j_1} \geq 1\}.$$

In this fully connected graph, the ordered indices $j_1 \to j_2 \to \cdots \to j_L \to j_1$ form a **cycle**.

Thus,
$$\forall L \in [K] \quad \forall j_1, \dots, j_L \in [K]$$
 $\eta_{j_1 \to j_2} \dots \eta_{j_L \to j_1} \geq 1$

 \Leftrightarrow there are **no negative cycles** in the graph.

Gibbs sampler

- ▶ Initialize by obtaining $\mathbf{u}^{(0)} \in \mathcal{R}_{\mathbf{x}}$.
- ▶ At each time $t \ge 1$, for each category $k \in [K]$,
 - 1. compute θ^* such that, for $n \in \mathcal{I}_k$, u_n given other components is uniform on $\Delta_k(\theta^*)$.
 - 2. Draw $u_n^{(t)} \sim \Delta_k(\theta^*)$ for $n \in \mathcal{I}_k$.
 - 3. Update $\eta_{k \to \ell}^{(t)} \leftarrow \min_{n \in \mathcal{I}_k} u_{n,\ell}^{(t)} / u_{n,k}^{(t)}$ for $\ell \in [K]$.

In step 1, θ^\star is obtained by computing the shortest path in a graph with weights $\eta_{k \to \ell}^{(t)}$ on edge (k,ℓ) ; e.g. Berkelaar et al. (2004); Csardi & Nepusz (2006).

Performance

Cost in seconds for 100 full sweeps.

Let $\nu^{(t)}$ by the distribution of $\mathbf{u}^{(t)}$ after t iterations.

$$\mathsf{TV}(\nu^{(t)}, \nu_{\mathbf{x}}) = \sup_{A} |\nu^{(t)}(A) - \nu_{\mathbf{x}}(A)|.$$

Summary

We proposed a Gibbs sampler for random sets encapsulating post-data Dempster-Shafer inference for Categorical distributions.

- ▶ A workable representation of feasible set $\mathcal{R}_{\mathbf{x}}$;
- ► Equivalence in graph theory for efficient computation.

The Gibbs sampler allows for straightforward

- ▶ Addition of categories: $K \rightarrow K + 1$;
- ▶ Addition of observations: $N \rightarrow N + 1$.

Extensions of the Categorical distribution include models for hierarchical counts, hidden Markov models, etc.

Jacob, Gong, Edlefsen & Dempster. A Gibbs sampler for a class of random convex polytopes (to appear in JASA with discussion). On ArXiv and Researchers.one.

 $R \ package \ available \ at \ \texttt{https://github.com/pierrejacob/dempsterpolytope.}$

Bibliography

- Berger, J. O. (1994). An overview of robust Bayesian analysis. Test, 3(1), 5-124.
- Berkelaar, M., Eikland, K., & Notebaert, P. (2004). Ipsolve: Open source (mixed-integer) linear programming system. Eindhoven U. of Technology, 63.
- Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. *InterJournal, Complex Systems*, 1695. Retrieved from http://igraph.org
- Dawid, P. A., & Stone, M. (1982). The functional-model basis of fiducial inference. The Annals of Statistics, 10(4), 1054-1067.
- Dempster, A. P. (1968). A generalization of Bayesian inference. Journal of the Royal Statistical Society: Series B (Methodological), 30(2), 205–247.
- Dempster, A. P. (1972). A class of random convex polytopes. The Annals of Mathematical Statistics, 43(1), 260-272.
- Dempster, A. P. (2008). The Dempster-Shafer calculus for statisticians. International Journal of Approximate Reasoning, 48(2), 365–377.
- Fraser, D. A. (1968). Structural inference. John Wiley & Sons, New York, NY.
- Hannig, J., Iyer, H., Lai, R. C., & Lee, T. C. (2016). Generalized fiducial inference: A review and new results. Journal of the American Statistical Association, 111(515), 1346–1361.
- Huber, P. J., & Ronchetti, E. M. (2009). Robust statistics. Wiley.
- Martin, R., & Liu, C. (2015). Inferential Models: reasoning with uncertainty. CRC Press, Boca Raton, FL.
- Shafer, G. (1976). A mathematical theory of evidence. Princeton University Press, Princeton, NJ.

In case you ask...

Proof of the $\mathcal{R}_{\mathbf{x}}$ characterization

Proof of claim: "inequalities" \Rightarrow " $\exists \theta: \ \theta_{\ell}/\theta_k \leq \eta_{k \to \ell} \ \forall k, \ell$ ".

 $\min(k \to \ell) := \min \max \text{ value of path from } k \text{ to } \ell \text{ in the graph.}$

It is finite $\forall k, \ell$ because no negative cycles in the graph.

Define θ via $\theta_k = \exp(\min(K \to k)) / \sum_{j \in [K]} \exp(\min(K \to j))$.

Then $\theta \in \Delta$. Also, for all k, ℓ

$$\min(K \to \ell) \le \min(K \to k) + \log(\eta_{k \to \ell})$$

therefore $\theta_{\ell}/\theta_k \leq \eta_{k \to \ell}$.

We can obtain conditional distributions of u_n for $n \in \mathcal{I}_k$ given $(u_n)_{n \notin \mathcal{I}_k}$ with respect to $\nu_{\mathbf{x}}$:

 u_n given $(u_n)_{n \notin \mathcal{I}_k}$ are i.i.d. uniform in $\Delta_k(\theta^*)$,

where $\theta_\ell^\star \propto \exp(-\min(\ell \to k))$ for all ℓ ,

with $\min(\ell \to k) := \min \max$ value of path from ℓ to k.

Note: $\min(\ell \to k)$ can be computed in polynomial time.

Counts: (9,8,3). What is the conditional distribution of $(u_n)_{n\in\mathcal{I}_k}$ given $(u_n)_{n\notin\mathcal{I}_k}$ under $\nu_{\mathbf{x}}$?

Counts: (9,8,3). What is the conditional distribution of $(u_n)_{n\in\mathcal{I}_k}$ given $(u_n)_{n\notin\mathcal{I}_k}$ under $\nu_{\mathbf{x}}$?

Counts: (9,8,3). What is the conditional distribution of $(u_n)_{n\in\mathcal{I}_k}$ given $(u_n)_{n\notin\mathcal{I}_k}$ under $\nu_{\mathbf{x}}$?

Counts: (9,8,3). What is the conditional distribution of $(u_n)_{n\in\mathcal{I}_k}$ given $(u_n)_{n\notin\mathcal{I}_k}$ under $\nu_{\mathbf{x}}$?

