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Distributional Inference
X | 9 ~ Pg

Functional Inference
x=G(u,0), u~ Py

Precise classic Likelihood and Structural inference (Fraser, 1968)

Probability Bayesian inference Functional models (pawid & Stone, 1982)
Generalized Fiducial inference
(Hannig et al., 2016)

Imprecise Robust Bayes (Berger, 1994) Dempster-Shafer theory

Probability
(P.P)

Robust statistics

(Huber & Ronchetti, 2009)

(Dempster, 1968; Shafer, 1976; Dempster, 2008)

Inferential models (Martin & Liu, 2015)




Dempster-Shafer theory



Dempster-Shafer theory

G(u,0)



Dempster-Shafer theory

The inversion may yield a set-valued mapping: G71(-, x) : A — 29,



Dempster’s Rule of Combination
x1 =G (0, u) 0 € Gt (x1, w)
xn = Gn (0, un) = Ggl (%N, un)

The random set that characterizes post-data inference for 6 is

Fu)={0€0O: VneN], x,=G,(0,u,)},

where u ~ vy, the uniform distr. on the x-dependent feasible subset

Ry = {(u1,...,uy) €10,1]N :30 € OVi€ [N] x, = G, " (un, 0)} .

Challenge: How to efficiently sample F(u)?



Categorical distribution inference
For n € [N], x, = Categorical(f)) with 6 = (0x)ic(x)- i-e.,

P(x, = k) =0k, Vn,k.



Categorical distribution inference
For n € [N}, x, = Categorical(f)) with 6 = (0x)ic(x)- i-e.,
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Subsimplex Ag(0), for 6 € A:
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Categorical distribution inference
For n € [N}, x, = Categorical(f)) with 6 = (0x)ic(x)- i-e.,

P(x, = k) =0k, Vn,k.

Subsimplex Ag(0), for 6 € A:
{z€e AVl € [K] z/z > 6i/0k}.

Sampling mechanism, for 6 € A:
- draw u, uniform on A,

- define x,, such that u, € A, (9),
i.e., x, = G(0, up).

) 3 Then, P(x, = k) = Vol(Ar(6)) = 0.
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Post-data inference: drawing F(u)

Counts: (2,3,1). Let’s draw N = 6 uniform samples on A.




Post-data inference: drawing F(u)

Each u, is associated to an observed x, € {1, ’,3}.




Post-data inference: drawing F(u)

If there exists a feasible 6, it cannot be just anywhere.
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Post-data inference: drawing F(u)

Each category’s samples add constraints on 6.
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Post-data inference: drawing F(u)

All constraints either define a polytope for 6, or an empty set.
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Post-data inference: drawing F(u)

This polytope contains 6 values s.t. Vn € [N], x, = G(uy, 0).

It is one realization of F(u).




Post-data inference: drawing F(u)

Any 6 in this polytope separates the samples appropriately.
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Post-data inference: drawing F(u)

Let’s try again with fresh uniform samples on A.




Post-data inference: drawing F(u)
Here, there is no § € A such that Vn € [N], x, = G(uy, 0).

This draw does not constitute a realization of F(u).
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Proposal: Gibbs sampler

The idea is to start from an arbitrary u € Ry, and iteratively sample
some component (u,) given others.
To this end, we need a characterization of Ry in terms of u.

100 polytopes drawn from the proposed sampler for counts (9, 8, 3):




Monte Carlo post-data inference

For a set B C A of interest, lower and upper probabilities

1

PBI0 = [1FWC B

ST o)),

te[T) .
P(B|x) — /Il(]-'(u)ﬂB;é@)ux(du) o
s LS i (F(u0) o).
te[T) 2

Example. Counts: (7,5,8), ; = 0.35,
P(03<6,<04|x) = 0.2
P(03<01 <04|x) = 0.62.



Gibbs sampler: characterizing Ry

(Sampling model) we Ar(0) < 04/0r < w/u, V¢ € [K].

Denote
Une

Me—e = Min ——,
neZy umk

and define ny_ = 1 for all k € [K]. We can write

Rx={ueAVN: 30 e A Vkle[K] 0/0k <nmioe}.
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Gibbs sampler: characterizing Ry
Counts: (9,8,3), u in Ry.

Values 7_¢y = minpez, tn /Uy i define linear constraints on 6.
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Gibbs sampler: characterizing Ry

What are the implications of u € Ry?
- There exists € A such that 0,/0) < 1, for all k, ¢ € [K].

- Then, for all k, ¢,

O

O
— <Mk, and  — <y, thus Mok > 1
O 0,

-If K > 3: forall k, ¢, j,

4 _ by 0,0

Msk> 5 = 5 5 < MjseMk—j,  thus  memisme sk > 1.
0 0; O

“IfK > 4,5,6,. ..



Main result

if there exists @ € A such that 0y/0) < ni_¢ for k, ¢ € [K] then

VL € [K] le, e ,jL S [K] nj1—>j277j2—>j3 e njL—>j1 Z 1.
Claim: the reverse implication holds too. This would mean

Rx={u:30 Vk L€ [K] 0/0k <mse}

= {u : VL c [K] le, e 7].L € [K] 77]1—>j2nj2—>j3 e 7’]jL_>j1 Z 1}

i.e. Ry is represented by relations among components (u,).
From here we can work out conditional distributions under vy,

leading to a Gibbs sampler.



Gibbs sampler: characterizing Ry

Counts: (9,8,3). uis in Ry. Inequalities ng_,¢ns—x > 1 are shaded.
Inequalities 1, jnj—¢ne—k > 1 reflected by the common

intersection.
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An interesting connection to graphs

Consider a fully connected graph with K vertices,

and with weight log 77;_,¢ on edge (k, ¢).

log(nz.1)

value of a path = sum of the weights of edges in the path

cycle = path from a vertex to itself



An interesting connection to graphs

Consider a fully connected graph with K vertices,

and with weight log 77;_,¢ on edge (k, ¢).

log(nz.1)

value of a path = sum of the weights of edges in the path

negative cycle = path from a vertex to itself with negative value



An interesting connection to graphs

Rx = {11 5 \V/L € [K] \V/jl, coo ,jL € [K] 77]'14”277]'2*)]'3 000 77]']_*)]'1 Z 1}

In this fully connected graph,
the ordered indices j; — j, — - - - — ji — ji form a cycle.

Thus,VL € [K] Vji,...,j. € [K]

log(n 2)

77]'1_>j2 e T]jL_>j1 2 1 log(n2.1)

& log(nj,—j,) + ... +log(nj,—j,) >0

& there are no negative cycles in the graph.



Gibbs sampler

> Initialize by obtaining u(® € R,.

> At each time t > 1, for each category k € [K],

1.

compute 6* such that, for n € 7y,
u, given other components is uniform on Ag(6*).
Draw 1) ~ Ay(0*) for n € Iy.

Update n,(flg — minge7, uff%/u% for ¢ € [K].

In step 1, 8* is obtained by computing the shortest path in a graph

(1)

with weights 1., , on edge (k, £); e.g. Berkelaar et al. (2004); Csardi
& Nepusz (2006).



Performance

Cost in seconds for 100 full sweeps.
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Summary

We proposed a Gibbs sampler for random sets encapsulating

post-data Dempster-Shafer inference for Categorical distributions.

> A workable representation of feasible set Ry;

» Equivalence in graph theory for efficient computation.

The Gibbs sampler allows for straightforward
» Addition of categories: K — K + 1;
» Addition of observations: N — N + 1.
Extensions of the Categorical distribution include models for

hierarchical counts, hidden Markov models, etc.

Jacob, Gong, Edlefsen & Dempster. A Gibbs sampler for a class of random convex

polytopes (to appear in JASA with discussion). On ArXiv and Researchers.one.

R package available at https://github.com/pierrejacob/dempsterpolytope.
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https://github.com/pierrejacob/dempsterpolytope
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In case you ask...
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Proof of the R4 characterization
Proof of claim: “inequalities” = “30 : 0,/0x < ng_¢ Vk, 0.
min(k — ¢) := minimum value of path from k to ¢ in the graph.
It is finite Vk, ¢ because no negative cycles in the graph.
Define 0 via 0 = exp(min(K — k))/ > g exp(min(K — j)).
Then 8 € A. Also, for all k, ¢
min(K — ¢) < min(K — k) + log(nx—¢)

therefore 0, /0, < Nk_y.



Conditional distributions

We can obtain conditional distributions of u, for n € Z given

(n) ngz, With respect to vy:

Uy given (up) ¢z, are ii.d. uniform in Ag(6%),

where 07 o exp(—min(¢ — k)) for all £,

with min(¢ — k) := minimum value of path from / to k.

Note: min(¢ — k) can be computed in polynomial time.



Conditional distributions

Counts: (9,8,3). What is the conditional distribution of (uy)nez,

given (up)ngz, under vy?




Conditional distributions

Counts: (9,8,3). What is the conditional distribution of (uy)nez,

given (up)ngz, under vy?




Conditional distributions

Counts: (9,8,3). What is the conditional distribution of (uy)nez,

given (up)ngz, under vy?




Conditional distributions

Counts: (9, 8,3). What is the conditional distribution of (u,) ez,

given (up) g7, under vy?
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