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Distributional Inference

x | θ ∼ Pθ

Functional Inference
x = G(u, θ), u ∼ P0

Precise

Probability

classic Likelihood and

Bayesian inference

Structural inference (Fraser, 1968)

Functional models (Dawid & Stone, 1982)

Generalized Fiducial inference

(Hannig et al., 2016)

Imprecise
Probability(
P, P

)
Robust Bayes (Berger, 1994)

Robust statistics

(Huber & Ronche�i, 2009)

Dempster-Shafer theory
(Dempster, 1968; Shafer, 1976; Dempster, 2008)

Inferential models (Martin & Liu, 2015)
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Dempster-Shafer theory

x

= G (u,

θ

)

↓

θ = G−1 (u, x)

The inversion may yield a set-valued mapping: G−1(·, x) : ∆→ 2Θ.
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Dempster’s Rule of Combination

x1 = G1 (θ, u1)
...

xN = GN (θ, uN )

−→


θ ∈ G−11 (x1, u1)

...

θ ∈ G−1N (xN , uN )

The random set that characterizes post-data inference for θ is

F(u) = {θ ∈ Θ : ∀n ∈ [N ], xn = Gn(θ, un)},

where u ∼ νx, the uniform distr. on the x-dependent feasible subset

Rx =
{

(u1, . . . , uN ) ∈ [0, 1]N : ∃θ ∈ Θ ∀i ∈ [N ] xn = G−1n (un, θ)
}
.

Challenge: How to e�iciently sample F(u)?
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Categorical distribution inference
For n ∈ [N ], xn

iid∼ Categorical(θ) with θ = (θk)k∈[K]. i.e.,

P(xn = k) = θk, ∀n, k.

2 3

1

∆1(θ)

∆2(θ)∆3(θ)
θ

Subsimplex ∆k(θ), for θ ∈ ∆:

{z ∈ ∆ : ∀` ∈ [K ] z`/zk ≥ θ`/θk}.

Sampling mechanism, for θ ∈ ∆:

- draw un uniform on ∆n,

- define xn such that un ∈ ∆xn(θ),

i.e., xn = G(θ, un).

Then, P(xn = k) = Vol(∆k(θ)) = θk .
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Post-data inference: drawing F(u)

Counts: (2, 3, 1). Let’s draw N = 6 uniform samples on ∆.
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Post-data inference: drawing F(u)

Each un is associated to an observed xn ∈ {1, 2, 3}.
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Post-data inference: drawing F(u)

If there exists a feasible θ, it cannot be just anywhere.
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Post-data inference: drawing F(u)

Each category’s samples add constraints on θ.
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Post-data inference: drawing F(u)

All constraints either define a polytope for θ, or an empty set.
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Post-data inference: drawing F(u)

This polytope contains θ values s.t. ∀n ∈ [N ], xn = G(un, θ).

It is one realization of F(u).
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Post-data inference: drawing F(u)

Any θ in this polytope separates the samples appropriately.
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Post-data inference: drawing F(u)

Let’s try again with fresh uniform samples on ∆.
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Post-data inference: drawing F(u)

Here, there is no θ ∈ ∆ such that ∀n ∈ [N ], xn = G(un, θ).

This draw does not constitute a realization of F(u).
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Proposal: Gibbs sampler

The idea is to start from an arbitrary u ∈ Rx, and iteratively sample

some component (un) given others.

To this end, we need a characterization ofRx in terms of u.

100 polytopes drawn from the proposed sampler for counts (9, 8, 3):

2 3

1
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Monte Carlo post-data inference

For a set B ⊂ ∆ of interest, lower and upper probabilities

P (B | x) =

∫
1 (F (u) ⊆ B) νx (du)

.
=

1
T

∑
t∈[T ]

1
(
F
(
u(t)
)
⊆ B

)
,

P (B | x) =

∫
1 (F (u) ∩ B 6= ∅) νx (du)

.
=

1
T

∑
t∈[T ]

1
(
F
(
u(t)
)
∩ B 6= ∅

)
.

2 3

1

Example. Counts: (7, 5, 8), θ̂1 = 0.35,

P̂ (0.3 ≤ θ1 ≤ 0.4 | x) = 0.2,

P̂ (0.3 ≤ θ1 ≤ 0.4 | x) = 0.62.
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Gibbs sampler: characterizingRx

(Sampling model) u ∈ ∆k (θ) ⇔ θ`/θk ≤ u`/uk, ∀` ∈ [K ].

Denote

ηk→` = min
n∈Ik

un,`
un,k

,

and define ηk→k = 1 for all k ∈ [K ]. We can write

Rx =
{
u ∈ ∆N : ∃θ ∈ ∆ ∀k, ` ∈ [K ] θ`/θk ≤ ηk→`

}
.
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Gibbs sampler: characterizingRx

Counts: (9, 8, 3), u inRx.

Values ηk→` = minn∈Ik un,`/un,k define linear constraints on θ.
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θ3 θ1 = η1→3

θ2 θ1 = η1→2
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Gibbs sampler: characterizingRx

What are the implications of u ∈ Rx?

- There exists θ ∈ ∆ such that θ`/θk ≤ ηk→` for all k, ` ∈ [K ].

- Then, for all k, `,

θ`
θk
≤ ηk→`, and

θk
θ`
≤ η`→k, thus ηk→`η`→k ≥ 1.

- If K ≥ 3: for all k, `, j,

η−1`→k ≤
θ`
θk

=
θ`
θj

θj
θk
≤ ηj→`ηk→j, thus ηk→jηj→`η`→k ≥ 1.

- If K ≥ 4, 5, 6, . . .
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Main result

if there exists θ ∈ ∆ such that θ`/θk ≤ ηk→` for k, ` ∈ [K ] then

∀L ∈ [K ] ∀j1, . . . , jL ∈ [K ] ηj1→j2ηj2→j3 . . . ηjL→j1 ≥ 1.

Claim: the reverse implication holds too. This would mean

Rx = {u : ∃θ ∀k, ` ∈ [K ] θ`/θk ≤ ηk→`}

= {u : ∀L ∈ [K ] ∀j1, . . . , jL ∈ [K ] ηj1→j2ηj2→j3 . . . ηjL→j1 ≥ 1}.

i.e. Rx is represented by relations among components (un).

From here we can work out conditional distributions under νx,

leading to a Gibbs sampler.
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Gibbs sampler: characterizingRx

Counts: (9, 8, 3). u is inRx. Inequalities ηk→`η`→k ≥ 1 are shaded.

Inequalities ηk→jηj→`η`→k ≥ 1 reflected by the common

intersection.
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An interesting connection to graphs

Consider a fully connected graph with K vertices,

and with weight log ηk→` on edge (k, `).

1

2

3

log(η1→2)

log(η2→1)

value of a path = sum of the weights of edges in the path

negative

cycle = path from a vertex to itself

with negative value
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An interesting connection to graphs

Rx = {u : ∀L ∈ [K ] ∀j1, . . . , jL ∈ [K ] ηj1→j2ηj2→j3 . . . ηjL→j1 ≥ 1}.

In this fully connected graph,

the ordered indices j1 → j2 → · · · → jL → j1 form a cycle.

Thus, ∀L ∈ [K ] ∀j1, . . . , jL ∈ [K ]

ηj1→j2 . . . ηjL→j1 ≥ 1

⇔ log(ηj1→j2) + . . .+ log(ηjL→j1) ≥ 0

⇔ there are no negative cycles in the graph.

1

2

3

log(η1→2)

log(η2→1)
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Gibbs sampler

I Initialize by obtaining u(0) ∈ Rx.

I At each time t ≥ 1, for each category k ∈ [K ],

1. compute θ? such that, for n ∈ Ik ,

un given other components is uniform on ∆k(θ
?).

2. Draw u(t)
n ∼ ∆k(θ

?) for n ∈ Ik .

3. Update η(t)
k→` ← minn∈Ik u

(t)
n,`/u

(t)
n,k for ` ∈ [K ].

In step 1, θ? is obtained by computing the shortest path in a graph

with weights η(t)
k→` on edge (k, `); e.g. Berkelaar et al. (2004); Csardi

& Nepusz (2006).
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Performance
Cost in seconds for 100 full sweeps.
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Summary
We proposed a Gibbs sampler for random sets encapsulating

post-data Dempster-Shafer inference for Categorical distributions.

I A workable representation of feasible setRx;

I Equivalence in graph theory for e�icient computation.

The Gibbs sampler allows for straightforward

I Addition of categories: K → K + 1;

I Addition of observations: N → N + 1.

Extensions of the Categorical distribution include models for

hierarchical counts, hidden Markov models, etc.

Jacob, Gong, Edlefsen & Dempster. A Gibbs sampler for a class of random convex

polytopes (to appear in JASA with discussion). On ArXiv and Researchers.one.

R package available at https://github.com/pierrejacob/dempsterpolytope.
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In case you ask...
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Proof of theRx characterization

Proof of claim: “inequalities”⇒ “∃θ : θ`/θk ≤ ηk→` ∀k, `”.

min(k → `) := minimum value of path from k to ` in the graph.

It is finite ∀k, ` because no negative cycles in the graph.

Define θ via θk = exp(min(K → k))/
∑

j∈[K] exp(min(K → j)).

Then θ ∈ ∆. Also, for all k, `

min(K → `) ≤ min(K → k) + log(ηk→`)

therefore θ`/θk ≤ ηk→`.
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Conditional distributions

We can obtain conditional distributions of un for n ∈ Ik given

(un)n/∈Ik with respect to νx:

un given (un)n/∈Ik are i.i.d. uniform in ∆k(θ
?),

where θ?` ∝ exp(−min(`→ k)) for all `,

with min(`→ k) := minimum value of path from ` to k.

Note: min(`→ k) can be computed in polynomial time.
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Conditional distributions
Counts: (9, 8, 3). What is the conditional distribution of (un)n∈Ik

given (un)n/∈Ik under νx?
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