Exact Statistical Inference for Differentially Private Data

Ruobin Gong

Rutgers University

U.S. Census Bureau

Jan 6, 2020

Differential privacy should be - and can be - modeled

- Statistical disclosure limitation mechanisms compliant with DP guarantee privacy with provability and transparency.
- ► Transparency enables accurate statistical modeling of the DP mechanism. This is the best way to ensure correctness in the resulting inference, when a (calculated) loss of statistical efficiency is present in the data.

Differential privacy: preliminaries

Definition (Dwork & Smith, 2009)

A random function $S : \mathcal{X} \to \mathbb{R}^p$ is (ϵ, δ) -differentially private if for all neighboring datasets $\{(\mathbf{x}, \mathbf{x}') : d(\mathbf{x}, \mathbf{x}') = 1\}$ and all $A \in \mathcal{B}(\mathbb{R}^p)$,

$$Pr(S(\mathbf{x}') \in A) \leq e^{\epsilon} Pr(S(\mathbf{x}) \in A) + \delta.$$

S is called ϵ -differentially private if it is $(\epsilon, 0)$ -differentially private. ϵ and δ are called the *privacy loss budget*.

2 / 27

DP mechanism: output perturbation

For a dataset $x \in \mathcal{X}$ and a deterministic function $s : \mathcal{X} \to \mathbb{R}^p$, the random function s is a **perturbation mechanism** based on s, if

$$S(x) \mid s(x) \sim \eta_{dp}(\cdot \mid s(x)),$$

where η_{dp} is known and $\mathbb{E}\left(\mathbf{S}\left(\mathbf{x}\right)\mid\mathbf{s}\left(\mathbf{x}\right)\right)=\mathbf{s}\left(\mathbf{x}\right)$.

DP mechanism: output perturbation

For a dataset $x \in \mathcal{X}$ and a deterministic function $s : \mathcal{X} \to \mathbb{R}^p$, the random function s is a **perturbation mechanism** based on s, if

$$S(\mathbf{x}) \mid \mathbf{s}(\mathbf{x}) \sim \eta_{\mathrm{dp}}(\cdot \mid \mathbf{s}(\mathbf{x})),$$

where η_{dp} is known and $\mathbb{E}(S(x) | s(x)) = s(x)$. As a special case, S is said to be an **additive perturbation mechanism** if

$$S(x) = s(x) + hu.$$

- u: noise component with kernel density η and $\mathbb{E}(u) = 0$, e.g. (multi-dimensional) Laplace, Normal, t, etc;
- ▶ $h = h(\epsilon, \delta, \mathbf{s}) > 0$: bandwidth parameter chosen as a function of the privacy loss budget (ϵ, δ) and summary function $\mathbf{s}(\cdot)$.

Private perturbation mechanisms: examples

$$S(x) = s(x) + hu$$

- 1. ϵ -DP Laplace mechanism (Dwork et al., 2006):
 - $\boldsymbol{u} \sim \text{Lap}_{p}(1)$, a standard p-product Laplace,
 - ▶ $h = \epsilon^{-1} GS(s)$, where GS(s) is the *global sensitivity* of s.
- 2. (ϵ, δ) -DP Laplace mechanism (Nissim et al., 2007):
 - $\boldsymbol{u} \sim \text{Lap}_{p}(1)$,
 - ▶ $h = \epsilon^{-1} SS_{\xi}(t, \mathbf{x})$, where $SS_{\xi}(\mathbf{s}, \mathbf{x})$ is the ξ -smooth sensitivity of \mathbf{s} at \mathbf{x} ; $\xi = \epsilon \left\{ 4 \left(d + \log \left(2/\delta \right) \right) \right\}^{-1} > 0$
- 3. (ϵ, δ) -DP Gaussian mechanism (Nissim et al., 2007):
 - $ightharpoonup u \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p),$
 - ► $h = \epsilon^{-1} 5 \sqrt{2 \log(2/\delta)} SS_{\xi}(t, \mathbf{x}), \xi = \epsilon \left\{ 4 \left(d + \log(2/\delta) \right) \right\}^{-1}$.

Suppose a simple linear model between vector counts \mathbf{x} and \mathbf{y} :

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \mathbf{e}.$$

Ordinary least squares produce consistent estimators

$$\hat{\beta}_0 \longrightarrow \beta_0, \qquad \hat{\beta}_1 \longrightarrow \beta_1.$$

Suppose a simple linear model between vector counts x and y:

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \mathbf{e}.$$

Ordinary least squares produce consistent estimators

$$\hat{\beta}_0 \longrightarrow \beta_0, \qquad \hat{\beta}_1 \longrightarrow \beta_1.$$

Treating (x, y) with ϵ -DP mechanism,

$$\mathbf{y}_{dp} = \mathbf{y} + \mathbf{w}, \qquad \mathbf{x}_{dp} = \mathbf{x} + \mathbf{z}, \quad \mathbf{w}, \mathbf{z} \sim Lap_n\left(\epsilon^{-1}\right)$$

standard Normal and Laplace densities

Naïvely fitting the original model to differentially privatized data

$$\mathbf{y}_{\mathrm{dp}} = \beta_0 + \beta_1 \mathbf{x}_{\mathrm{dp}} + \mathbf{e},$$

the resulting least squares estimates will miss the mark:

$$\hat{\beta}_0^{\mathrm{dp}} \approx \beta_0 + \alpha_{\mathrm{x,z}} \beta_1, \qquad \hat{\beta}_1^{\mathrm{dp}} \approx \beta_1 - \gamma_{\mathrm{x,z}} \beta_1,$$

where

$$\alpha_{\mathbf{x},\mathbf{z}} = \gamma_{\mathbf{x},\mathbf{z}}\bar{\mathbf{x}} + (1 - \gamma_{\mathbf{x},\mathbf{z}})\bar{\mathbf{z}}, \qquad \gamma_{\mathbf{x},\mathbf{z}} = \frac{\mathbf{s}\mathbf{s}_{\mathbf{x}\mathbf{z}} + \mathbf{s}\mathbf{s}_{\mathbf{z}}}{\mathbf{s}\mathbf{s}_{\mathbf{x}+\mathbf{z}}} \in (0,1).$$

Naïvely fitting the original model to differentially privatized data

$$\mathbf{y}_{\mathrm{dp}} = \beta_0 + \beta_1 \mathbf{x}_{\mathrm{dp}} + \mathbf{e},$$

the resulting least squares estimates will miss the mark:

$$\hat{\beta}_0^{dp} \approx \beta_0 \underbrace{+\alpha_{x,z}\beta_1}_{}, \qquad \hat{\beta}_1^{dp} \approx \beta_1 \underbrace{-\gamma_{x,z}\beta_1}_{},$$

where

$$\alpha_{\mathbf{x},\mathbf{z}} = \gamma_{\mathbf{x},\mathbf{z}}\bar{\mathbf{x}} + (1 - \gamma_{\mathbf{x},\mathbf{z}})\bar{\mathbf{z}}, \qquad \gamma_{\mathbf{x},\mathbf{z}} = \frac{\mathbf{s}\mathbf{s}_{\mathbf{x}\mathbf{z}} + \mathbf{s}\mathbf{s}_{\mathbf{z}}}{\mathbf{s}\mathbf{s}_{\mathbf{x}+\mathbf{z}}} \in (0,1).$$

Ignoring the DP mechanism results in misguided inference:

- $\hat{\beta}_0^{dp}, \hat{\beta}_1^{dp}$ are systematically biased;
- Strength of association between (x, y) is underestimated (attenuation in the measurement error literature);
- Both estimates suffer inflated variance.

Figure: Naíve fitting with $\mathbf{x}_i \sim Pois$ (10), $\mathbf{y}_i = -5 + 4\mathbf{x}_i + \mathbf{e}_i$, $\mathbf{e}_i \sim N\left(0, 5^2\right)$, n = 10, at privacy budget levels $\epsilon = 0.5, 0.2, 0.1$, and ∞ (no privacy). Smaller ϵ induces more misguided confidence regions for (β_0, β_1) . Each panel depicts 20 simulations.

DP mechanism should be modeled

A model adequate for the confidential data s = (x, y), if naïvely fitted to the privatized data $s_{dp} = (x_{dp}, y_{dp})$, will almost certainly be inadequate:

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \mathbf{e}$$
 \Rightarrow $\mathbf{y}_{dp} = \beta_0 + \beta_1 \mathbf{x}_{dp} + \mathbf{e}$.

Instead, augment the original model with the DP mechanism:

$$\implies (\mathbf{y}_{dp} - \mathbf{w}) = \beta_0 + \beta_1 (\mathbf{x}_{dp} - \mathbf{z}) + \mathbf{e}, \quad \mathbf{w}, \mathbf{z} \sim Lap(\epsilon^{-1})$$

DP mechanism should be modeled

A model adequate for the confidential data s = (x, y), if naïvely fitted to the privatized data $s_{dp} = (x_{dp}, y_{dp})$, will almost certainly be inadequate:

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \mathbf{e}$$
 \Rightarrow $\mathbf{y}_{dp} = \beta_0 + \beta_1 \mathbf{x}_{dp} + \mathbf{e}$.

Instead, **augment** the original model with the DP mechanism:

$$\implies \qquad \left(\boldsymbol{y}_{dp} - \boldsymbol{w} \right) = \beta_0 + \beta_1 \left(\boldsymbol{x}_{dp} - \boldsymbol{z} \right) + \boldsymbol{e}, \quad \boldsymbol{w}, \boldsymbol{z} \sim Lap\left(\epsilon^{-1} \right)$$

A general construction

Likelihood for β based on privatized data $s_{\rm dp}$ (observed) is integrated over the confidential data s (missing), with respect to the DP mechanism:

$$L\left(\boldsymbol{\beta}; \boldsymbol{s}_{\mathsf{dp}}\right) = \int \underbrace{\eta_{\mathsf{dp}}\left(\boldsymbol{s}_{\mathsf{dp}} \mid \boldsymbol{s}\right)}_{\mathsf{DP} \, \mathsf{mechanism}} \underbrace{\pi\left(\boldsymbol{s} \mid \boldsymbol{\beta}\right)}_{\mathsf{original} \, \mathsf{model}} \partial \boldsymbol{s}$$

Transparency of the DP mechanism enables accurate modeling.

Figure: Correct model (green) fitted via Monte Carlo EM (G. 2019) vs. naïve model (gray) on six instances of DP protected datasets ($\epsilon=0.2$). Displayed 95% confidence ellipses are based on normal approximations at the MLE.

Approximate computation in Bayesian inference

A Bayesian model is posited:

- ▶ prior: $\theta \sim \pi_0(\theta)$
- ▶ likelihood: $\mathbf{x} \mid \theta \sim \pi(\mathbf{x} \mid \theta)$
- posterior:

$$\pi\left(\theta\mid \boldsymbol{x}\right)\propto\pi_{0}\left(\theta\right)\pi\left(\boldsymbol{x}\mid\theta\right)$$

Approximate computation in Bayesian inference

A Bayesian model is posited:

- ▶ prior: $\theta \sim \pi_0(\theta)$
- ▶ likelihood: $\boldsymbol{x} \mid \theta \sim \pi(\boldsymbol{x} \mid \theta)$
- posterior:

$$\pi\left(\theta\mid \mathbf{x}\right)\propto\pi_{0}\left(\theta\right)\pi\left(\mathbf{x}\mid\theta\right)$$

Sampling from the posterior via Monte Carlo requires that it at least can be evaluated. This is not the case for complex models.

Case in point: intractable or implicit likelihood $\pi (\mathbf{x} \mid \theta)$ (e.g. the Lokta-Volterra/predator-prey model)

A "likelihood-free" method

ALGORITHM 1

```
Input: observed data \mathbf{x}_0, integer N>0;

Iterate: for i=1,\ldots,N:

step 1, simulate \theta_i\sim\pi_0(\theta);

step 2, simulate \mathbf{x}_i\sim\pi(\mathbf{x}\mid\theta_i);

step 3, accept \theta_i if \mathbf{x}_i=\mathbf{x}_0, otherwise go to step 1;

Output: a set of parameter values \{\theta_i\}_{i=1}^N.
```

A "likelihood-free" method

ALGORITHM 1

```
Input: observed data \mathbf{x}_0, integer N>0;

Iterate: for i=1,\ldots,N:

step 1, simulate \theta_i\sim\pi_0(\theta);

step 2, simulate \mathbf{x}_i\sim\pi(\mathbf{x}\mid\theta_i);

step 3, accept \theta_i if \mathbf{x}_i=\mathbf{x}_0, otherwise go to step 1;

Output: a set of parameter values \{\theta_i\}_{i=1}^N.
```

Algorithm 1 draws $\theta_i \sim \pi(\theta \mid \mathbf{x}_0)$, i.i.d.

A "likelihood-free" method

ALGORITHM 1

```
Input: observed data \mathbf{x}_0, integer N>0;

Iterate: for i=1,\ldots,N:

step 1, simulate \theta_i \sim \pi_0(\theta);

step 2, simulate \mathbf{x}_i \sim \pi(\mathbf{x} \mid \theta_i);

step 3, accept \theta_i if \mathbf{x}_i = \mathbf{x}_0, otherwise go to step 1;

Output: a set of parameter values \{\theta_i\}_{i=1}^N.
```

Algorithm 1 draws $\theta_i \sim \pi(\theta \mid \mathbf{x}_0)$, i.i.d.

However, exact matching $\mathbf{x}_i = \mathbf{x}_0$ may not be practical.

- \triangleright \mathbf{x}_0 may not be discrete;
- \triangleright \mathbf{x}_0 may be high dimensional.

Approximate Bayesian Computation (ABC)

ALGORITHM 2

```
Input: observed summary data \mathbf{s}_0 = \mathbf{s}(\mathbf{x}_0), integer N > 0, a kernel density \eta with bandwidth h > 0; Iterate: for i = 1, \ldots, N: step 1, simulate \theta_i \sim \pi_0(\theta); step 2, simulate \mathbf{s}_i \sim \pi(\mathbf{s}(\mathbf{x}) \mid \theta_i); step 3, accept \theta_i with probability c\eta\left((\mathbf{s}_i - \mathbf{s}_0) / h\right) where c^{-1} = \max\{\eta(\cdot)\}, otherwise go to step 1; Output: a set of parameter values \{\theta_i\}_{i=1}^N.
```

Approximate Bayesian Computation (ABC)

ALGORITHM 2

```
Input: observed summary data s_0 = s(\mathbf{x}_0), integer N > 0, a kernel density \eta with bandwidth h > 0; Iterate: for i = 1, \ldots, N: step 1, simulate \theta_i \sim \pi_0(\theta); step 2, simulate s_i \sim \pi(s(\mathbf{x}) \mid \theta_i); step 3, accept \theta_i with probability c\eta\left((s_i - s_0)/h\right) where c^{-1} = \max\{\eta(\cdot)\}, otherwise go to step 1; Output: a set of parameter values \{\theta_i\}_{i=1}^N.
```

$\theta_i \sim \pi_{ABC} \left(\theta \mid \boldsymbol{s}_0 \right)$: two layers of approximation

- 1. From $\pi(\theta \mid \mathbf{x}_0)$ to $\pi(\theta \mid \mathbf{s}_0)$: choice of $\mathbf{s}(\cdot)$;
- 2. From $\pi(\theta \mid \mathbf{s}_0)$ to $\pi_{ABC}(\theta \mid \mathbf{s}_0)$: choice of $\eta(\cdot)$ and h

Modeling differentially private queries

The Bayesian model is modified to:

- prior: $\theta \sim \pi_0(\theta)$
- confidential query likelihood: $\mathbf{s} \mid \theta \sim \pi(\mathbf{s} \mid \theta)$
- ▶ privacy mechanism: $s_{dp} \mid s, \forall l \sim \eta_{dp} (s_{dp} \mid s) \leftarrow \text{ignorability}$
- observed/private posterior:

$$\pi\left(\theta\mid s_{\mathsf{dp}}
ight) = rac{\pi_0\left(heta
ight)\int\eta_{\mathsf{dp}}(s_{\mathsf{dp}}\mid s)\pi\left(s\mid heta
ight)ds}{\int\pi_0\left(heta
ight)\int\eta_{\mathsf{dp}}(s_{\mathsf{dp}}\mid s)\pi\left(s\mid heta
ight)dsd heta}.$$

Modeling differentially private queries

The Bayesian model is modified to:

- ▶ prior: $\theta \sim \pi_0(\theta)$
- confidential query likelihood: $\mathbf{s} \mid \theta \sim \pi(\mathbf{s} \mid \theta)$
- ▶ privacy mechanism: $s_{dp} \mid s, \partial \sim \eta \left(\left(s_{dp} s \right) / h \right)$, if additive
- observed/private posterior:

$$\pi\left(\theta\mid s_{\rm dp}\right) = \frac{\pi_0\left(\theta\right)\int\eta\left(\left(s_{\rm dp}-s\right)/h\right)\pi\left(s\mid\theta\right)ds}{\int\pi_0\left(\theta\right)\int\eta\left(\left(s_{\rm dp}-s\right)/h\right)\pi\left(s\mid\theta\right)dsd\theta}.$$

ABC produces exact posterior draws for DP data

ALGORITHM 3

```
Input: private query \mathbf{s}_{\mathsf{dp}} = \mathbf{S}(\mathbf{x}_0), integer N > 0, perturbation mechanism \mathsf{w}/\mathsf{density}\ \eta and bandwidth h(\epsilon, \delta, \mathbf{s}) > 0; Iterate: for i = 1, \ldots, N: step 1, simulate \theta_i \sim \pi_0(\theta); step 2, simulate \mathbf{s}_i \sim \pi(\mathbf{s} \mid \theta_i); step 3, accept \theta_i with probability c\eta\left(\left(\mathbf{s}_{\mathsf{dp}} - \mathbf{s}_i\right)/h\right) where c^{-1} = \max\{\eta(\cdot)\}, otherwise go to step 1; Output: a set of parameter values \{\theta_i\}_{i=1}^N.
```

ABC produces exact posterior draws for DP data

ALGORITHM 3

```
Input: private query \mathbf{s}_{\mathsf{dp}} = \mathbf{S}(\mathbf{x}_0), integer N > 0, perturbation mechanism \mathsf{w}/\mathsf{density}\ \eta and bandwidth h(\epsilon, \delta, \mathbf{s}) > 0; Iterate: for i = 1, \ldots, N: step 1, simulate \theta_i \sim \pi_0(\theta); step 2, simulate \mathbf{s}_i \sim \pi(\mathbf{s} \mid \theta_i); step 3, accept \theta_i with probability c\eta\left(\left(\mathbf{s}_{\mathsf{dp}} - \mathbf{s}_i\right)/h\right) where c^{-1} = \max\{\eta(\cdot)\}, otherwise go to step 1; Output: a set of parameter values \{\theta_i\}_{i=1}^N.
```

Theorem (G. 2019)

Algorithm 3 draws $\theta_i \sim \pi(\theta \mid \mathbf{s}_{dp})$, i.i.d.

- * Noisy ABC (Fearnhead & Prangle, 2012);
- * ABC under the assumption of model error (Wilkinson, 2013).

Numerical example: privatized count data

- ▶ prior: $\theta \sim Gamma(\alpha, \beta)$
- ▶ noiseless query likelihood: $\mathbf{s} \mid \theta \sim Pois(\theta)$
- ϵ -Laplace privacy mechanism: $\mathbf{s}_{dp} \mid \mathbf{s} \sim \epsilon^{-1} Lap(1)$
- Private posterior:

$$\pi\left(\theta\mid \mathbf{s}_{\mathsf{dp}}\right)\propto\theta^{\alpha-1}e^{-(\beta+1)\theta}\left[\frac{\Gamma\left(\left\lceil\mathbf{s}_{\mathsf{dp}}\right\rceil,\theta_{\epsilon}^{+}\right)}{\Gamma\left(\left\lceil\mathbf{s}_{\mathsf{dp}}\right\rceil\right)}e^{\theta_{\epsilon}^{+}-\epsilon\mathbf{s}_{\mathsf{dp}}}+\frac{\gamma\left(\left\lceil\mathbf{s}_{\mathsf{dp}}\right\rceil,\theta_{\epsilon}^{-}\right)}{\Gamma\left(\left\lceil\mathbf{s}_{\mathsf{dp}}\right\rceil\right)}e^{\theta_{\epsilon}^{-}+\epsilon\mathbf{s}_{\mathsf{dp}}}\right]$$

Figure: Algorithm 3 produces draws (red dashed density, estimated w/ $N=10^6$) exactly from the true posterior (black solid density), and is different from the incorrect posterior (blue dotted density) which treats $\mathbf{s}_{dp}=37.4$ as if confidential. Green dot-dash density is the prior. $\alpha=25, \beta=1, \epsilon=0.2$.

Expectation-Maximization (Dempster et al., 1977) in the context of differential privacy:

- ightharpoonup complete data is (s, s_{dp}) ;
- ▶ missing data is s, where $s \mid \theta \sim \pi(s \mid \theta)$; \leftarrow data analyst
- ▶ observed data is s_{dp} , where $s_{dp} \mid s \sim \eta_{dp}(\cdot \mid s)$. \leftarrow data curator

Expectation-Maximization (Dempster et al., 1977) in the context of differential privacy:

- complete data is (s, s_{dp}) ;
- ▶ missing data is s, where $s \mid \theta \sim \pi(s \mid \theta)$; \leftarrow data analyst
- ▶ observed data is s_{dp} , where $s_{dp} \mid s \sim \eta_{dp}(\cdot \mid s)$. ← data curator

Iterate till convergence:

- E-step:

$$Q(\theta; \theta^{(t)}) = \mathbb{E}\left(\log L(\theta; \mathbf{s}, \mathbf{s}_{dp}) \mid \mathbf{s}_{dp}, \theta^{(t)}\right)$$
$$= \mathbb{E}\left(\log \pi(\mathbf{s} \mid \theta) \mid \mathbf{s}_{dp}, \theta^{(t)}\right) + \text{const.}$$

- M-step:

$$\theta^{(t+1)} = \operatorname{argmax}_{\theta} Q(\theta; \theta^{(t)}).$$

E-STEP VIA IMPORTANCE SAMPLING

```
Iterate: for i = 1, ..., N:

step 1, simulate \mathbf{s}_i \sim \pi(\mathbf{s} \mid \theta^{(t)}); \leftarrow data analyst

step 2, assign weight \omega_i = \eta_{\rm dp} \left( \mathbf{s}_{\rm dp} \mid \mathbf{s}_i \right); \leftarrow data curator

Output: a set of weighted samples \{ \mathbf{s}_i, \omega_i \}_{i=1}^N.
```

E-STEP VIA IMPORTANCE SAMPLING

```
Iterate: for i = 1, ..., N:

step 1, simulate \mathbf{s}_i \sim \pi(\mathbf{s} \mid \theta^{(t)}); \leftarrow data analyst

step 2, assign weight \omega_i = \eta_{dp} \left( \mathbf{s}_{dp} \mid \mathbf{s}_i \right); \leftarrow data curator

Output: a set of weighted samples \{ \mathbf{s}_i, \omega_i \}_{i=1}^N.
```

$$\sum_{i=1}^{N} \omega_{i} b(\mathbf{s}_{i}) / \sum_{i=1}^{N} \omega_{i} \stackrel{p}{\to} \mathbb{E}\left(b(\mathbf{s}) \mid \mathbf{s}_{dp}, \theta^{(t)}\right), \quad \text{as } N \to \infty.$$

Take b(s) to be...

- sufficient statistic for θ , if $\pi(s \mid \theta)$ is exponential family;
- ▶ $\log \pi(s \mid \theta)$ in general;
- ▶ $\nabla_{\theta} \log \pi(\mathbf{s} \mid \theta)$ and $\nabla_{\theta}^2 \log \pi(\mathbf{s} \mid \theta)$, towards estimating observed score function and Fisher information.

Numerical example revisited: privatized count data

Monte Carlo EM gives

- $\hat{\theta}_{dp} = 37.237, \hat{I}_{dp} = 1.582 \times 10^{-2};$
- Compared to incorrectly treating s_{dp} as if confidential:

$$\hat{\theta} = 37.4, \hat{I} = 2.674 \times 10^{-2} \approx 169\% \times \hat{I}_{dp}.$$

Contribution & takeaway

- Theoretically exact statistical inference for general likelihood and Bayesian models with DP data;
- Applicable to all proper Bayesian priors;
- ► Fully amenable to computing acceleration for specific applications.

The analogy at play here:

approximate computation on exact data

1

exact computation on approximate data

such that the statistical tradeoff (efficiency vs privacy) becomes aligned with the computational tradeoff (approximation vs exactness).

Caveats & further research

- 1. Framework is overly general
 - Computing acceleration is possible, but requires domain knowledge;
 - ? How to afford accessible and (approximately) correct analysis tools to many DP data users?
 - ! Bias correction for popular models and code implementation
- 2. How to account for invariants imposed on the DP mechanism

Bias correction: a quick remedy

Naïvely fitting the original model to privatized data

$$\mathbf{y}_{\rm dp} = \beta_0 + \beta_1 \mathbf{x}_{\rm dp} + \mathbf{e}$$

results in biased least squares estimates

$$\hat{\beta}_0^{dp} \approx \beta_0 \underbrace{+\alpha_{x,z}\beta_1}_{}, \qquad \hat{\beta}_1^{dp} \approx \beta_1 \underbrace{-\gamma_{x,z}\beta_1}_{},$$

where

$$\frac{\alpha_{x,z}}{\alpha_{x,z}} = \gamma_{x,z}\bar{x} + \left(1 - \gamma_{x,z}\right)\bar{z}, \qquad \frac{\gamma_{x,z}}{s_{x+z}} = \frac{s_{xz} + s_{z}}{s_{x+z}} \in \left(0,1\right).$$

- ▶ Both $\alpha_{x,z}$ and $\gamma_{x,z}$ can be estimated using the privatized data and knowledge of the DP mechanism.
- General bias correction strategies for measurement error models:
 - regression calibration
 - simulation extrapolation

Imposing invariants on DP mechanisms

Invariants are exact statistics computed from the confidential micro-data (Ashmead et al., 2019), with which the DP releases should be congruent.

Two ways to impose a set of invariants C onto a given DP mechanism S:

1. Co-processing:

$$S_{\mathcal{C}}(x) \stackrel{d}{=} S(x) \mid S(x) \in \mathcal{C}.$$

2. Post-processing:

$$\tilde{S}_{\mathcal{C}}(x) = \operatorname{argmin}_{a \in \mathcal{C}} \Delta(S(x), a),$$

for Δ some discrepancy measure (L_2 , L_1 , etc.)

Co-processing guarantee: a result

Let S be an ϵ -DP mechanism based on the confidential query $s: \mathcal{X} \to \mathbb{R}^p$. $\mathcal{C} \in \mathscr{B}(\mathbb{R}^p)$ is a set of invariants, and $S_{\mathcal{C}}$ a modified privatization mechanism such that $S_{\mathcal{C}} \stackrel{d}{=} S \mid S \in \mathcal{C}.$

Then for all k-neighboring and C-conforming pairs of datasets

$$\{(x,x'):d(x,x')=k,s(x)\in\mathcal{C},s(x')\in\mathcal{C}\}, \text{ and all }A\in\mathscr{B}(\mathbb{R}^p),$$

$$P(S_{\mathcal{C}}(x) \in A) \leq \exp(2k\epsilon) P(S_{\mathcal{C}}(x') \in A).$$

Caution: Due to the constraint C imposes on X, neighboring dataset pairs with k = 1 (original DP definition) may no longer be feasible.

Proof:
$$\frac{P(S_{\mathcal{C}}(x) \in A)}{P(S_{\mathcal{C}}(x') \in A)} = \underbrace{\frac{P(S(x) \in A \cap \mathcal{C})}{P(S(x') \in A \cap \mathcal{C})}}_{\leq \exp(k\epsilon)} \cdot \underbrace{\frac{P(S(x') \in \mathcal{C})}{P(S(x) \in \mathcal{C})}}_{\leq \exp(k\epsilon)}$$
$$\leq \exp(2k\epsilon).$$

Co-processing guarantee: a result

Let S be an ϵ -DP mechanism based on the confidential query $s: \mathcal{X} \to \mathbb{R}^p$. $\mathcal{C} \in \mathscr{B}(\mathbb{R}^p)$ is a set of invariants, and $S_{\mathcal{C}}$ a modified privatization mechanism such that $S_{\mathcal{C}} \stackrel{d}{=} S \mid S \in \mathcal{C}.$

Then for all k-neighboring and \mathcal{C} -conforming pairs of datasets $\{(x, x') : d(x, x') = k, s(x) \in \mathcal{C}, s(x') \in \mathcal{C}\}$, and all $A \in \mathcal{B}(\mathbb{R}^p)$, $P(S_{\mathcal{C}}(x) \in A) < \exp(2k\epsilon) P(S_{\mathcal{C}}(x') \in A)$.

Caution: Due to the constraint C imposes on X, neighboring dataset pairs with k = 1 (original DP definition) may no longer be feasible.

Proof:
$$\frac{P(S_{\mathcal{C}}(x) \in A)}{P(S_{\mathcal{C}}(x') \in A)} = \underbrace{\frac{P(S(x) \in A \cap \mathcal{C})}{P(S(x') \in A \cap \mathcal{C})}}_{\leq \exp(k\epsilon)} \cdot \underbrace{\frac{P(S(x') \in \mathcal{C})}{P(S(x) \in \mathcal{C})}}_{=\exp(\alpha k\epsilon)}$$
$$\leq \exp\{(1 + \alpha)k\epsilon\}, \quad \alpha \in [0, 1].$$

Suppose the confidential dataset has just two count entries: $\mathbf{x}=(x_1,x_2)$. The DP mechanism $S(\mathbf{x})=(s_1,s_2)=(x_1+u_1,x_2+u_2),\ u_i\sim Lap(\epsilon^{-1})$. The invariant information is the total count $x_1+x_2=n$.

Suppose the confidential dataset has just two count entries: $\mathbf{x}=(x_1,x_2)$. The DP mechanism $S(\mathbf{x})=(s_1,s_2)=(x_1+u_1,x_2+u_2),\ u_i\sim Lap(\epsilon^{-1})$. The invariant information is the total count $x_1+x_2=n$.

1. Co-processing:

$$S_{\mathcal{C}}(\mathbf{x}) \stackrel{d}{=} (x_1 + u_1, x_2 + u_2) \mid u_1 + u_2 = 0.$$

The density of S_C is

$$p(S_{\mathcal{C}}(\mathbf{x}) = (s, n-s)) = \epsilon \exp\{-2\epsilon |s-x_1|\}.$$

That is, simulate $s_1 \sim x_1 + Lap\left(\left(2\epsilon\right)^{-1}\right)$ and set $s_2 = n - s_1$, or equivalently, simulate $s_2 \sim x_2 + Lap\left(\left(2\epsilon\right)^{-1}\right)$ and set $s_1 = n - s_2$.

Suppose the confidential dataset has just two count entries: $\mathbf{x}=(x_1,x_2)$. The DP mechanism $S(\mathbf{x})=(s_1,s_2)=(x_1+u_1,x_2+u_2),\ u_i\sim Lap(\epsilon^{-1})$. The invariant information is the total count $x_1+x_2=n$.

Suppose the confidential dataset has just two count entries: $\mathbf{x}=(x_1,x_2)$. The DP mechanism $S(\mathbf{x})=(s_1,s_2)=(x_1+u_1,x_2+u_2),\ u_i\sim Lap(\epsilon^{-1})$. The invariant information is the total count $x_1+x_2=n$.

2. Post-processing (L_2):

$$\tilde{S}_{\mathcal{C}}^{L_{2}}\left(\mathbf{x}\right) = \operatorname{argmin}_{a \in \mathcal{C}} \left\|S\left(x\right) - a\right\|_{2} \stackrel{d}{=} \left(\bar{x} + \mathbf{\tilde{u}}, \bar{x} - \mathbf{\tilde{u}}\right),$$

where \tilde{u} is a 50%-50% mixture of:

- ▶ a Laplace distribution with scale $(2\epsilon)^{-1}$, and
- ▶ a signed Gamma distribution (i.e. a regular Gamma distribution times a fair random sign) with shape k = 2 and scale $(2\epsilon)^{-1}$.

Suppose the confidential dataset has just two count entries: $\mathbf{x}=(x_1,x_2)$. The DP mechanism $S(\mathbf{x})=(s_1,s_2)=(x_1+u_1,x_2+u_2),\ u_i\sim Lap(\epsilon^{-1})$. The invariant information is the total count $x_1+x_2=n$.

Suppose the confidential dataset has just two count entries: $\mathbf{x}=(x_1,x_2)$. The DP mechanism $S(\mathbf{x})=(s_1,s_2)=(x_1+u_1,x_2+u_2),\ u_i\sim Lap(\epsilon^{-1})$. The invariant information is the total count $x_1+x_2=n$.

3. Post-processing (L_1) :

$$\tilde{S}_{\mathcal{C}}^{L_1}(\mathbf{x}) = \operatorname{argmin}_{a \in \mathcal{C}} \|S(x) - a\|_1 = (\tilde{s}, n - \tilde{s})$$

is not a unique mechanism, only having to satisfy

$$\tilde{s} \in [x_1 + \min(u_1, u_2), x_1 + \max(u_1, u_2)].$$

In particular, $\tilde{s} = x_1 + u_1$ is always a solution, i.e. simply add $Lap(\epsilon^{-1})$ noise to the first entry, and subtract the same amount from the second.

Suppose the confidential dataset has just two count entries: $\mathbf{x}=(x_1,x_2)$. The DP mechanism $S(\mathbf{x})=(s_1,s_2)=(x_1+u_1,x_2+u_2),\ u_i\sim Lap(\epsilon^{-1})$. The invariant information is the total count $x_1+x_2=n$.

3. Post-processing (L_1) :

$$\tilde{S}_{\mathcal{C}}^{L_1}(\mathbf{x}) = \operatorname{argmin}_{a \in \mathcal{C}} \|S(x) - a\|_1 = (\tilde{s}, n - \tilde{s})$$

is not a unique mechanism, only having to satisfy

$$\tilde{s} \in [x_1 + \min(u_1, u_2), x_1 + \max(u_1, u_2)].$$

In particular, $\tilde{s} = x_1 + u_1$ is always a solution, i.e. simply add $Lap(\epsilon^{-1})$ noise to the first entry, and subtract the same amount from the second.

Question: privacy guarantees for post-processing?

Bibliography

Gong, R. (2019). Exact Inference with Approximate Computation for Differentially Private Data via Perturbations. *arXiv:1909.12237*

- Ashmead, R., Kifer, D., Leclerc, P., Machanavajjhala, A., & Sexton, W. (2019). Effective privacy after adjusting for invariants with applications to the 2020 census.
- Avella-Medina, M. (2018). Privacy-preserving parametric inference: a case for robust statistics.
- Bernton, E., Jacob, P. E., Gerber, M., & Robert, C. P. (2019). Approximate bayesian computation with the wasserstein distance. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81(2), 235–269.
- Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.
- Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of cryptography conference (pp. 265–284).
- Dwork, C., & Smith, A. (2009). Differential privacy for statistics: What we know and what we want to learn. *Journal of Privacy and Confidentiality*, 1(2), 135–154.
- Fearnhead, P., & Prangle, D. (2012). Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(3), 419–474.
- Louis, T. A. (1982). Finding the observed information matrix when using the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 226–233.
- Nissim, K., Raskhodnikova, S., & Smith, A. (2007). Smooth sensitivity and sampling in private data analysis. In Proceedings of the thirty-ninth annual acm symposium on theory of computing (pp. 75–84).
- Wei, G. C., & Tanner, M. A. (1990). A monte carlo implementation of the em algorithm and the poor man's data augmentation algorithms. Journal of the American statistical Association, 85(411), 699–704.
- Wilkinson, R. D. (2013). Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Statistical applications in genetics and molecular biology, 12(2), 129–141.