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Differential privacy should be — and can be — modeled

> Statistical disclosure limitation mechanisms compliant with DP

guarantee privacy with provability and transparency.

» Transparency enables accurate statistical modeling of the DP
mechanism. This is the best way to ensure correctness in the resulting
inference, when a (calculated) loss of statistical efficiency is present in
the data.



Differential privacy: preliminaries

Definition (Dwork & Smith, 2009)

A random function § : X — RP is (¢, §)-differentially private if for all
neighboring datasets {(x,x’) : d (x,x’) = 1} and all A € B(RP),

Pr(S(x') € A) < e“Pr(S(x) € A) + 4.

S is called e-differentially private if it is (¢, 0)-differentially private. € and ¢
are called the privacy loss budget.



DP mechanism: output perturbation

For a dataset x € X and a deterministic function s : X — RP, the random

function S is a perturbation mechanism based on s, if
S(x) [ s(x) ~mngp (- | s(x)),

where 74y is known and E (S (x) | s (x)) = s (x).



DP mechanism: output perturbation

For a dataset x € X and a deterministic function s : X — RP, the random

function S is a perturbation mechanism based on s, if
S(x) [s(x) ~ng (- [ s(x)),

where 74, is known and E (S (x) | s (x)) = s (x). As a special case, S is said

to be an additive perturbation mechanism if
S (x) =s(x) + hu.

> u: noise component with kernel density n and E(u) = 0,
e.g. (multi-dimensional) Laplace, Normal, t, etc;

» h= h(e,d,s) > 0: bandwidth parameter chosen as a function of the

privacy loss budget (¢, d) and summary function s(+).



Private perturbation mechanisms: examples

S(x) =s(x) + hu

1. e-DP Laplace mechanism (Dwork et al., 2006):
> u ~ Lap,(1), a standard p-product Laplace,
> h =€ "'GS(s), where GS(s) is the global sensitivity of s.
2. (€,0)-DP Laplace mechanism (Nissim et al., 2007):
> un~ Lapp(1),
> h= e 'SS(t,x), where SS¢(s, x) is the £-smooth sensitivity of s at x;
E=c{a(d+log(2/6))} " >0
3. (€, 9)-DP Gaussian mechanism (Nissim et al., 2007):
> u~ N(0,1,),
s h= e '5\/2Tog(/0)SSe(t, %), € = {4 (d + log (2/8))}".



DP mechanism should not be ignored

Suppose a simple linear model between vector counts x and y:

y =B+ Bix+e.

Ordinary least squares produce consistent estimators
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DP mechanism should not be ignored

Suppose a simple linear model between vector counts x and y:

y =B+ Bix+e.

Ordinary least squares produce consistent estimators

Bo—>507 31 — B

Treating (x, y) with e-DP mechanism,
Yop =Y T W, Xap =X+ 2, W7ZNLap”(€7])

standard Normal and Laplace densities
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DP mechanism should not be ignored

Naively fitting the original model to differentially privatized data
ydp = 50 + 61xdp + €,

the resulting least squares estimates will miss the mark:

Ad Ad
ﬁop ~ 50 +ax,zﬁl ) BTP ~ ﬁ] _’YX,Z/B1 9
—— ~——
where
— _ SS,, + Ss
Ox,z = Vx,zX + (1 - ’Yx,z)zu Vx,z = _ S (07 1) .

Ssx+z



DP mechanism should not be ignored

Naively fitting the original model to differentially privatized data

ydp = 50 + 61xdp + €,

the resulting least squares estimates will miss the mark:

Ad Ad
ﬁop ~ 50 + ax,zﬁ1 ) 51p ~ ﬂ1 _’YX,ZB1 9
——— ———
where
— _ SS,, + Ss
Qx 7z = Vx,zX + (1 - Wx,z)zu Vx,z = 2 z S (07 1) .
Ssx+z

Ignoring the DP mechanism results in misguided inference:
> BSP, pr are systematically biased;
> Strength of association between (x, y) is underestimated (attenuation

in the measurement error literature);

» Both estimates suffer inflated variance.
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Figure: Naive fitting with x; ~ Pois (10), y, = =5+ 4x; +ej,e; ~ N (07 52), n=10,
at privacy budget levels € = 0.5,0.2,0.1, and co (no privacy). Smaller € induces

more misguided confidence regions for (3, 31). Each panel depicts 20 simulations.



DP mechanism should be modeled
A model adequate for the confidential data s = (x, y), if naively fitted to
the privatized data sq, = (X¢p, ydp), will almost certainly be inadequate:
y =00+ Bix+e == ydp=50+51xdp+e-
Instead, augment the original model with the DP mechanism:

) = o (5 e 39



DP mechanism should be modeled
A model adequate for the confidential data s = (x, y), if naively fitted to
the privatized data sq, = (X¢p, ydp), will almost certainly be inadequate:
y =00+ Bix+e == ydp=50+51xdp+e-
Instead, augment the original model with the DP mechanism:

(ydp - w) = Bo+ B (xdp —z) +e, w,z~ Lap (671)

A general construction

Likelihood for 3 based on privatized data sg, (observed) is integrated over

the confidential data s (missing), with respect to the DP mechanism:

L(B;sap) = /ndp (sap | s) w(s|B)Os
DP mechanism original model

Transparency of the DP mechanism enables accurate modeling.
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Figure: Correct model (green) fitted via Monte Carlo EM (G. 2019) vs. naive model
(gray) on six instances of DP protected datasets (¢ = 0.2). Displayed 95%

confidence ellipses are based on normal approximations at the MLE.



Approximate computation in Bayesian inference

A Bayesian model is posited:
> prior: 8 ~ my(0)
> likelihood: x | 6 ~ m(x | 9)

> posterior:
(0] x) o< mo (0) 7 (x | 9)
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Approximate computation in Bayesian inference

A Bayesian model is posited:
> prior: 8 ~ my(0)
> likelihood: x | 6 ~ m(x | 9)
> posterior:
m (0] x) o mo (8) 7 (x| 0)
Sampling from the posterior via Monte Carlo requires that it at least can
be evaluated. This is not the case for complex models.

» Case in point: intractable or implicit likelihood 7 (x | 0)

(e.g. the Lokta-Volterra/predator-prey model)



A “likelihood-free” method

ALGORITHM 1

Input: observed data xo, integer N > 0;
Iterate: fori=1,...,N:
step 1, simulate 6; ~ m,(9);
step 2, simulate x; ~ 7(x | 6;);
step 3, accept 6; if x; = xo, otherwise go to step 1;

Output: a set of parameter values {6;}Y ;.
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Iterate: fori=1,...,N:
step 1, simulate 6; ~ m,(9);
step 2, simulate x; ~ 7(x | 6;);
step 3, accept 6; if x; = xo, otherwise go to step 1;

Output: a set of parameter values {6;}Y ;.

Algorithm 1 draws 6; ~ m(0 | x), i.i.d.



A “likelihood-free” method

ALGORITHM 1

Input: observed data xo, integer N > 0;
Iterate: fori=1,...,N:
step 1, simulate 6; ~ m,(9);
step 2, simulate x; ~ 7(x | 6;);
step 3, accept 6; if x; = x,, otherwise go to step 1;

Output: a set of parameter values {6;}Y ;.

Algorithm 1 draws 6; ~ m(0 | x), i.i.d.

However, exact matching x; = x, may not be practical.
> Xo may not be discrete;

> xo may be high dimensional.



Approximate Bayesian Computation (ABC)

ALGORITHM 2

Input: observed summary data sy = s(xo), integer N > 0,
a kernel density ) with bandwidth h > 0;
Iterate: fori=1,..., N:
step 1, simulate 6; ~ m,(6);
step 2, simulate s; ~ w(s(x) | 6;);
step 3, accept 6; with probability cn ((s; — so) /h)

1

where ¢! = max{n(-)}, otherwise go to step T;

Output: a set of parameter values {6;}Y_,.




Approximate Bayesian Computation (ABC)

ALGORITHM 2

Input: observed summary data sy = s(xo), integer N > 0,
a kernel density ) with bandwidth h > 0;
Iterate: fori=1,..., N:
step 1, simulate 6; ~ m,(6);
step 2, simulate s; ~ w(s(x) | 6;);
step 3, accept 6; with probability cn ((s; — so) /h)

1

where ¢! = max{n(-)}, otherwise go to step T;

Output: a set of parameter values {6;}Y_,.

0; ~ magc (0 | so) : two layers of approximation

1. From 7 (6 | x¢) to 7 (6 | so): choice of s(+);

2. From 7 (0 | so) to mapc (6 | so): choice of n(-) and h



Modeling differentially private queries

The Bayesian model is modified to:
> prior: 6 ~ 7y (6)
> confidential query likelihood: s | 6 ~ (s | )
> privacy mechanism: sqp | 5,8 ~ 14y (sgp | 5) < ignorability

> observed/private posterior:

(0| sap) = 70 (0) [ Nap(sap | s)7 (s | 6) ds
P S 70 (0) [ nap(sap | s)m (s | 6) dsdb”




Modeling differentially private queries

The Bayesian model is modified to:
> prior: 6 ~ mo(6)
» confidential query likelihood: s | 6 ~ (s | 6)
> privacy mechanism: sq, | 5,8 ~ 1 ((sqp — s) /h), if additive

» observed/private posterior:

T (0) [ 1 ((sap —s) /h) 7 (s|6)ds
S0 (0) [ ((sap —s) /h) 7 (s | 60)dsdf

7 (0 | sap) =



ABC produces exact posterior draws for DP data

ALGORITHM 3

Input: private query sq, = S(xo), integer N > 0, perturbation
mechanism w/ density 77 and bandwidth h(e, d,s) > 0;
Iterate: fori=1,..., N:
step 1, simulate 6; ~ m,(9);
step 2, simulate s; ~ (s | 6;);
step 3, accept 0; with probability cn ((sdp — s;) /h)
where ¢! = max{n(-)}, otherwise go to step 1;

Output: a set of parameter values {6;}Y ;.




ABC produces exact posterior draws for DP data

ALGORITHM 3

Input: private query sq, = S(xo), integer N > 0, perturbation
mechanism w/ density 77 and bandwidth h(e, d,s) > 0;
Iterate: fori=1,..., N:
step 1, simulate 6; ~ m,(9);
step 2, simulate s; ~ (s | 6;);
step 3, accept 0; with probability cn ((sdp — s;) /h)
where ¢! = max{n(-)}, otherwise go to step 1;

Output: a set of parameter values {6;}Y ;.

Theorem (G. 2019)
Algorithm 3 draws 0; ~ (6 | sqp), i.i.d.

* Noisy ABC (Fearnhead & Prangle, 2012);

* ABC under the assumption of model error (Wilkinson, 2013).



Numerical example: privatized count data

» prior: 8 ~ Gamma («, 3)

» noiseless query likelihood: s | 6 ~ Pois (9)

» e-Laplace privacy mechanism: sq, | s ~ €~ 'Lap(1)
> Private posterior:

+ e )
- (9 I Sdp) o 0&7167(B+1)9 r (I—Sdp-| ’96 ) 60:*55@ + v <’—Sdp-‘ ) 806 +esqp

T ([sap]) M ([sap])



--= Prior

—— True DP posterior

--- DP-ABC posterior
noiseless posterior

density

0.00 0.02 0.04 006 0.08 0.10

lambda

Figure: Algorithm 3 produces draws (red dashed density, estimated w/ N = 10°)
exactly from the true posterior (black solid density), and is different from the
incorrect posterior (blue dotted density) which treats sq, = 37.4 as if confidential.
Green dot-dash density is the prior. = 25,5 = 1,¢ = 0.2.
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Exact likelihood inference with Monte Carlo EM

Expectation-Maximization (Dempster et al., 1977) in the context of

differential privacy:
> complete data is (s, sqp);
» missing data is s, where s | 8 ~ (s | 0); + data analyst

> observed data is sg,, where sq, | s ~ 14y (- | ). + data curator



Exact likelihood inference with Monte Carlo EM

Expectation-Maximization (Dempster et al., 1977) in the context of

differential privacy:
> complete data is (s, sqp);
» missing data is s, where s | 8 ~ (s | 0); + data analyst
> observed data is sg,, where sq, | s ~ 14y (- | ). + data curator
Iterate till convergence:

— E-step:
Qo:0Y) = E (|0g L(0; s, 54p) | Sdp79(t))
= E (Iog (s | 0) | sdps 9“)) + const.

- M-step:
o) — argmax, Q(0; Q(t)).



Exact likelihood inference with Monte Carlo EM

E-STEP VIA IMPORTANCE SAMPLING

Iterate: fori=1,..., N:
step 1, simulate s; ~ 7(s | 6()); < data analyst
step 2, assign weight w; = 14, (sdp | s,-); <— data curator

Output: a set of weighted samples {s;,w;}¥ ;.




Exact likelihood inference with Monte Carlo EM

E-STEP VIA IMPORTANCE SAMPLING

Iterate: fori=1,..., N:
step 1, simulate s; ~ 7(s | 6()); < data analyst
step 2, assign weight w; = 14, (sdp | s,-); <— data curator

Output: a set of weighted samples {s;,w;}¥ ;.

N
Zw, /Zw,—>E( |sdp,9( ) as N — oo.
i=1

Take b(s) to be...
» sufficient statistic for 0, if (s | 0) is exponential family;
> log (s | #) in general;
> Vylogn(s|0)and V3logn(s | §), towards estimating observed score

function and Fisher information.



Numerical example revisited: privatized count data

- Prior

—— True DP posterior
- DP-ABC posterior
-~ noiseless posterior

density
1

0.00 002 0.04 006 0.08 0.10

lambda

s| 0~ Pois(0), s4|s~e 'Lap(1), €=0.2, sq, =37.4.
Monte Carlo EM gives
> f4p = 37.237, Ty, = 1.582 x 107%

» Compared to incorrectly treating sq, as if confidential:
0 =37.4,71=2674x 1072 ~ 169% X Igp.



Contribution & takeaway

> Theoretically exact statistical inference for general likelihood and

Bayesian models with DP data;
> Applicable to all proper Bayesian priors;

» Fully amenable to computing acceleration for specific applications.
The analogy at play here:

approximate computation on exact data

)

exact computation on approximate data

such that the statistical tradeoff (efficiency vs privacy) becomes aligned

with the computational tradeoff (approximation vs exactness).



Caveats & further research

1. Framework is overly general

» Computing acceleration is possible, but requires domain knowledge;
? How to afford accessible and (approximately) correct analysis tools to
many DP data users?

! Bias correction for popular models and code implementation

2. How to account for invariants imposed on the DP mechanism



Bias correction: a quick remedy

Naively fitting the original model to privatized data

ydp :BO+B1Xdp+e

results in biased least squares estimates

Ad Ad
ﬂop ~ BO +(~Vx,zﬁ1 5 B1p ~ 61 _Ar/x,zBT 9
~—— ~——
where
— _ SS,, + Ss
Qx 7z = Vx,zX + (1 - Vx,z)za Vx,z = —_— S (07 1) .
Ssx+z

» Both a, , and 7, , can be estimated using the privatized data and
knowledge of the DP mechanism.
> General bias correction strategies for measurement error models:

> regression calibration

> simulation extrapolation



Imposing invariants on DP mechanisms

Invariants are exact statistics computed from the confidential micro-data
(Ashmead et al., 2019), with which the DP releases should be congruent.

Two ways to impose a set of invariants C onto a given DP mechanism S:

1. Co-processing;:

Se(x) £ S(x)| S(x)ecC.

2. Post-processing:
Se (x) = argmin, . A (S(x),a),

for A some discrepancy measure (L,, Ly, etc.)



Co-processing guarantee: a result

Let S be an e-DP mechanism based on the confidential query s : X — RP.
C € #(RP) is a set of invariants, and S¢ a modified privatization

mechanism such that d
Se=S | SecC.

Then for all k-neighboring and C-conforming pairs of datasets

{(x,x") : d(x,x") = k,s(x) € C,s(x") € C},and all A € B (RP),
P (Sc (x) € A) < exp (2ke) P(Sc (X') € A).

Caution: Due to the constraint C imposes on X, neighboring dataset pairs

with k = 1 (original DP definition) may no longer be feasible.

Proof:  P(Sc(x)€A)  P(S(x)e AnC) P(S(x')e€C)
P(Sc(x)eA) ~— P(S(x)eANC) P(S(x)eC)
<exp(ke) <exp(ke)

< exp(2ke).



Co-processing guarantee: a result

Let S be an e-DP mechanism based on the confidential query s : X — RP.
C € #(RP) is a set of invariants, and S¢ a modified privatization

mechanism such that d
Se=S | SecC.

Then for all k-neighboring and C-conforming pairs of datasets

{(x,x") : d(x,x") = k,s(x) € C,s(x") € C},and all A € B (RP),
P (Sc (x) € A) < exp (2ke) P(Sc (X') € A).

Caution: Due to the constraint C imposes on X, neighboring dataset pairs

with k = 1 (original DP definition) may no longer be feasible.

Proof:  P(Sc(x)€A)  P(S(x)e AnC) P(S(x')e€C)
P(Sc(x)eA) ~— P(S(x)eANC) P(S(x)eC)
<exp(ke) =exp(arke)
< exp{(1+a)ke}, «ae€]o,1].



Co-processing vs. Post-processing

Suppose the confidential dataset has just two count entries: x = (x1, x2).
The DP mechanism S(x) = (s1,5) = (%1 + u1, %2 + ), u; ~ Lap(e™").

The invariant information is the total count x; + x, = n.




Co-processing vs. Post-processing

Suppose the confidential dataset has just two count entries: x = (x1, x2).
The DP mechanism S(x) = (s1,8) = (X1 + u1, %2 + ), u; ~ Lap(e™).
The invariant information is the total count x; + x, = n.

1. Co-processing:
Se (x) < (x1 +u, %+ )| ug+uy=0.
The density of S¢ is
p(Sc(x) = (s,n—y5s)) =eexp{—2¢|s — x|} .

That is, simulate s; ~ x; + Lap ((26)_1> and set s, = n— s, or

equivalently, simulate s, ~ x, + Lap ((26)7]> and set sy = n—s,.



Co-processing vs. Post-processing

Suppose the confidential dataset has just two count entries: x = (x1, x2).
The DP mechanism S(x) = (s1,5;) = (x1 + uy, x; + ), u; ~ Lap(e™").

The invariant information is the total count x; + x, = n.




Co-processing vs. Post-processing

Suppose the confidential dataset has just two count entries: x = (x1, x2).
The DP mechanism S(x) = (s1,5;) = (x1 + uy, x; + ), u; ~ Lap(e™").

The invariant information is the total count x; + x, = n.

2. Post-processing (L;):

where 1 is a 50%-50% mixture of:
> a Laplace distribution with scale (2¢) ', and

> asigned Gamma distribution (i.e. a regular Gamma distribution times

a fair random sign) with shape k = 2 and scale (2¢) ™.



Co-processing vs. Post-processing

Suppose the confidential dataset has just two count entries: x = (x1, xp).
The DP mechanism S(x) = (s1,5) = (x1 + u1,x2 + u2), u; ~ Lap(e™").

The invariant information is the total count x; + x, = n.




Co-processing vs. Post-processing

Suppose the confidential dataset has just two count entries: x = (x1, xp).
The DP mechanism S(x) = (s1,5) = (x1 + u1,x2 + u2), u; ~ Lap(e™").

The invariant information is the total count x; + x, = n.

3. Post-processing (L;):
5 (x) = argmin,cc [S(x) — dll, = G, — )
is not a unique mechanism, only having to satisfy
5 € [x1 + min (ur, up), x1 + max (uy, wp)] .

In particular, 5 = x; + u; is always a solution, i.e. simply add Lap (¢~ ")

noise to the first entry, and subtract the same amount from the second.



Co-processing vs. Post-processing

Suppose the confidential dataset has just two count entries: x = (x1, xp).
The DP mechanism S(x) = (s1,5) = (x1 + u1,x2 + u2), u; ~ Lap(e™").

The invariant information is the total count x; + x, = n.

3. Post-processing (L;):
5 (x) = argmin,cc [S(x) — dll, = G, — )
is not a unique mechanism, only having to satisfy
5 € [x1 + min (ur, up), x1 + max (uy, wp)] .

In particular, 5 = x; 4+ u; is always a solution, i.e. simply add Lap (¢™")

noise to the first entry, and subtract the same amount from the second.

Question: privacy guarantees for post-processing?
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