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Di�erential privacy should be – and can be – modeled

I Statistical disclosure limitation mechanisms compliant with DP

guarantee privacy with provability and transparency.

I Transparency enables accurate statistical modeling of the DP

mechanism. This is the best way to ensure correctness in the resulting

inference, when a (calculated) loss of statistical e�iciency is present in

the data.
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Di�erential privacy: preliminaries

Definition (Dwork & Smith, 2009)

A random function S : X → Rp
is (ε, δ)-di�erentially private if for all

neighboring datasets {(x, x′) : d (x, x′) = 1} and all A ∈ B(Rp),

Pr (S (x′) ∈ A) ≤ eεPr (S (x) ∈ A) + δ.

S is called ε-di�erentially private if it is (ε, 0)-di�erentially private. ε and δ

are called the privacy loss budget.
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DP mechanism: output perturbation

For a dataset x ∈ X and a deterministic function s : X → Rp
, the random

function S is a perturbation mechanism based on s, if

S (x) | s (x) ∼ ηdp (· | s (x)) ,

where ηdp is known and E (S (x) | s (x)) = s (x).

As a special case, S is said

to be an additive perturbation mechanism if

S (x) = s (x) + hu.

I u: noise component with kernel density η and E(u) = 0,

e.g. (multi-dimensional) Laplace, Normal, t , etc;

I h = h (ε, δ, s) > 0: bandwidth parameter chosen as a function of the

privacy loss budget (ε, δ) and summary function s(·).
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Private perturbation mechanisms: examples

S (x) = s (x) + hu

1. ε-DP Laplace mechanism (Dwork et al., 2006):

I u ∼ Lapp(1), a standard p-product Laplace,

I h = ε−1GS(s), where GS(s) is the global sensitivity of s.

2. (ε, δ)-DP Laplace mechanism (Nissim et al., 2007):

I u ∼ Lapp(1),

I h = ε−1SSξ(t, x), where SSξ(s, x) is the ξ-smooth sensitivity of s at x;

ξ = ε {4 (d + log (2/δ))}−1 > 0

3. (ε, δ)-DP Gaussian mechanism (Nissim et al., 2007):

I u ∼ N(0, Ip),
I h = ε−1

5

√
2 log(2/δ)SSξ(t, x), ξ = ε {4 (d + log (2/δ))}−1

.
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DP mechanism should not be ignored

Suppose a simple linear model between vector counts x and y:

y = β0 + β1x + e.

Ordinary least squares produce consistent estimators

β̂0 −→ β0, β̂1 −→ β1.

Treating (x, y) with ε-DP mechanism,

y
dp

= y + w, xdp = x + z, w, z ∼ Lapn
(
ε−1
)
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DP mechanism should not be ignored

Naïvely fi�ing the original model to di�erentially privatized data

y
dp

= β0 + β1xdp + e,

the resulting least squares estimates will miss the mark:

β̂
dp

0
≈ β0 +αx,zβ1︸ ︷︷ ︸ , β̂

dp

1
≈ β1 − γx,zβ1︸ ︷︷ ︸ ,

where

αx,z = γx,z x̄ + (1− γx,z)z̄, γx,z =
ssxz + ssz

ssx+z
∈ (0, 1) .

Ignoring the DP mechanism results in misguided inference:

I β̂
dp

0
, β̂

dp

1
are systematically biased;

I Strength of association between (x, y) is underestimated (a�enuation

in the measurement error literature);

I Both estimates su�er inflated variance.
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Figure: Naíve fi�ing with xi ∼ Pois (10), yi = −5+ 4xi + ei , ei ∼ N
(
0, 52

)
, n = 10,

at privacy budget levels ε = 0.5, 0.2, 0.1, and∞ (no privacy). Smaller ε induces

more misguided confidence regions for (β0, β1). Each panel depicts 20 simulations.
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DP mechanism should be modeled

A model adequate for the confidential data s = (x, y), if naïvely fi�ed to

the privatized data sdp = (xdp, ydp
), will almost certainly be inadequate:

y = β0 + β1x + e ��=⇒ y
dp

= β0 + β1xdp + e.

Instead, augment the original model with the DP mechanism:

=⇒
(
y

dp
−w

)
= β0 + β1

(
xdp − z

)
+ e, w, z ∼ Lap

(
ε−1
)

A general construction

Likelihood for β based on privatized data sdp (observed) is integrated over

the confidential data s (missing), with respect to the DP mechanism:

L
(
β; sdp

)
=

∫
ηdp

(
sdp | s

)︸ ︷︷ ︸
DP mechanism

π (s | β)︸ ︷︷ ︸
original model

∂s

Transparency of the DP mechanism enables accurate modeling.

8 / 27



DP mechanism should be modeled

A model adequate for the confidential data s = (x, y), if naïvely fi�ed to

the privatized data sdp = (xdp, ydp
), will almost certainly be inadequate:

y = β0 + β1x + e ��=⇒ y
dp

= β0 + β1xdp + e.

Instead, augment the original model with the DP mechanism:

=⇒
(
y

dp
−w

)
= β0 + β1

(
xdp − z

)
+ e, w, z ∼ Lap

(
ε−1
)

A general construction

Likelihood for β based on privatized data sdp (observed) is integrated over

the confidential data s (missing), with respect to the DP mechanism:

L
(
β; sdp

)
=

∫
ηdp

(
sdp | s

)︸ ︷︷ ︸
DP mechanism

π (s | β)︸ ︷︷ ︸
original model

∂s

Transparency of the DP mechanism enables accurate modeling.

8 / 27



−20 0 20 40 60 80 100

−
2

0
2

4
6

8

β̂0

β 1

−20 0 20 40 60 80 100

−
2

0
2

4
6

8

β̂0

β̂ 1

−20 0 20 40 60 80 100

−
2

0
2

4
6

8

β̂0

β̂ 1

−20 0 20 40 60 80 100

−
2

0
2

4
6

8

β̂0

β 1

−20 0 20 40 60 80 100

−
2

0
2

4
6

8

β̂0

β̂ 1

−20 0 20 40 60 80 100

−
2

0
2

4
6

8

β̂0

β̂ 1

true (β0,β1)
no adjustment for DP
w/ adjustment for DP

Figure: Correct model (green) fi�ed via Monte Carlo EM (G. 2019) vs. naïve model

(gray) on six instances of DP protected datasets (ε = 0.2). Displayed 95%

confidence ellipses are based on normal approximations at the MLE.
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Approximate computation in Bayesian inference

A Bayesian model is posited:

I prior: θ ∼ π0(θ)

I likelihood: x | θ ∼ π(x | θ)

I posterior:

π (θ | x) ∝ π0 (θ)π (x | θ)

Sampling from the posterior via Monte Carlo requires that it at least can

be evaluated. This is not the case for complex models.

I Case in point: intractable or implicit likelihood π (x | θ)

(e.g. the Lokta-Volterra/predator-prey model)
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A “likelihood-free” method

Algorithm 1

Input: observed data x0, integer N > 0;

Iterate: for i = 1, . . . ,N :

step 1, simulate θi ∼ π0(θ);

step 2, simulate xi ∼ π(x | θi);

step 3, accept θi if xi = x0, otherwise go to step 1;

Output: a set of parameter values {θi}N
i=1

.

Algorithm 1 draws θi ∼ π(θ | x0), i.i.d.

However, exact matching xi = x0 may not be practical.

I x0 may not be discrete;

I x0 may be high dimensional.
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Approximate Bayesian Computation (ABC)

Algorithm 2

Input: observed summary data s0 = s(x0), integer N > 0,

a kernel density η with bandwidth h > 0;

Iterate: for i = 1, . . . ,N :

step 1, simulate θi ∼ π0(θ);

step 2, simulate si ∼ π(s(x) | θi);

step 3, accept θi with probability cη ((si − s0) /h)

where c−1 = max{η(·)}, otherwise go to step 1;

Output: a set of parameter values {θi}N
i=1

.

θi ∼ πABC (θ | s0) : two layers of approximation

1. From π (θ | x0) to π (θ | s0): choice of s(·);

2. From π (θ | s0) to πABC (θ | s0): choice of η(·) and h
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Modeling di�erentially private queries

The Bayesian model is modified to:

I prior: θ ∼ π0(θ)

I confidential query likelihood: s | θ ∼ π(s | θ)

I privacy mechanism: sdp | s, Aθ ∼ ηdp

(
sdp | s

)
← ignorability

I observed/private posterior:

π
(
θ | sdp

)
=

π0 (θ)
∫
ηdp(sdp | s)π (s | θ) ds∫

π0 (θ)
∫
ηdp(sdp | s)π (s | θ) dsdθ

.
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ABC produces exact posterior draws for DP data

Algorithm 3

Input: private query sdp = S(x0), integer N > 0, perturbation

mechanism w/ density η and bandwidth h(ε, δ, s) > 0;

Iterate: for i = 1, . . . ,N :

step 1, simulate θi ∼ π0(θ);

step 2, simulate si ∼ π(s | θi);

step 3, accept θi with probability cη
((
sdp − si

)
/h
)

where c−1 = max{η(·)}, otherwise go to step 1;

Output: a set of parameter values {θi}N
i=1

.

Theorem (G. 2019)

Algorithm 3 draws θi ∼ π(θ | sdp), i.i.d.

* Noisy ABC (Fearnhead & Prangle, 2012);

* ABC under the assumption of model error (Wilkinson, 2013).
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Numerical example: privatized count data

I prior: θ ∼ Gamma (α, β)

I noiseless query likelihood: s | θ ∼ Pois (θ)

I ε-Laplace privacy mechanism: sdp | s ∼ ε−1Lap(1)

I Private posterior:

π
(
θ | sdp

)
∝ θα−1e−(β+1)θ

Γ
(⌈
sdp

⌉
, θ+

ε

)
Γ
(⌈
sdp

⌉) eθ
+
ε −εs

dp +
γ
(⌈

sdp

⌉
, θ−ε

)
Γ
(⌈
sdp

⌉) eθ
−
ε +εs

dp


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Figure: Algorithm 3 produces draws (red dashed density, estimated w/ N = 10
6

)

exactly from the true posterior (black solid density), and is di�erent from the

incorrect posterior (blue do�ed density) which treats sdp = 37.4 as if confidential.

Green dot-dash density is the prior. α = 25, β = 1, ε = 0.2.
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Exact likelihood inference with Monte Carlo EM

Expectation-Maximization (Dempster et al., 1977) in the context of

di�erential privacy:

I complete data is (s, sdp);

I missing data is s, where s | θ ∼ π(s | θ); ← data analyst

I observed data is sdp, where sdp | s ∼ ηdp(· | s). ← data curator

Iterate till convergence:

– E-step:

Q(θ; θ(t)) = E
(

log L(θ; s, sdp) | sdp, θ
(t)
)

= E
(

log π(s | θ) | sdp, θ
(t)
)

+ const.

– M-step:

θ(t+1) = argmaxθQ(θ; θ(t)).
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Exact likelihood inference with Monte Carlo EM

E-Step via Importance Sampling

Iterate: for i = 1, . . . ,N :

step 1, simulate si ∼ π(s | θ(t)); ← data analyst

step 2, assign weight ωi = ηdp

(
sdp | si

)
; ← data curator

Output: a set of weighted samples {si, ωi}N
i=1

.

N∑
i=1

ωib (si)/
N∑

i=1

ωi
p→ E

(
b(s) | sdp, θ

(t)
)
, as N →∞.

Take b(s) to be...

I su�icient statistic for θ, if π(s | θ) is exponential family;

I log π(s | θ) in general;

I ∇θ log π(s | θ) and∇2

θ log π(s | θ), towards estimating observed score

function and Fisher information.
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Numerical example revisited: privatized count data

s | θ ∼ Pois (θ) , sdp | s ∼ ε−1Lap(1), ε = 0.2, sdp = 37.4.

Monte Carlo EM gives

I θ̂dp = 37.237, Îdp = 1.582× 10
−2

;

I Compared to incorrectly treating sdp as if confidential:

θ̂ = 37.4, Î = 2.674× 10
−2 ≈ 169%× Îdp.

19 / 27



Contribution & takeaway

I Theoretically exact statistical inference for general likelihood and

Bayesian models with DP data;

I Applicable to all proper Bayesian priors;

I Fully amenable to computing acceleration for specific applications.

The analogy at play here:

approximate computation on exact data

m
exact computation on approximate data

such that the statistical tradeo� (e�iciency vs privacy) becomes aligned

with the computational tradeo� (approximation vs exactness).
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Caveats & further research

1. Framework is overly general

I Computing acceleration is possible, but requires domain knowledge;

? How to a�ord accessible and (approximately) correct analysis tools to

many DP data users?

! Bias correction for popular models and code implementation

2. How to account for invariants imposed on the DP mechanism
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Bias correction: a quick remedy

Naïvely fi�ing the original model to privatized data

y
dp

= β0 + β1xdp + e

results in biased least squares estimates

β̂
dp

0
≈ β0 +αx,zβ1︸ ︷︷ ︸ , β̂

dp

1
≈ β1 − γx,zβ1︸ ︷︷ ︸ ,

where

αx,z = γx,z x̄ + (1− γx,z)z̄, γx,z =
ssxz + ssz

ssx+z
∈ (0, 1) .

I Both αx,z and γx,z can be estimated using the privatized data and

knowledge of the DP mechanism.

I General bias correction strategies for measurement error models:

I regression calibration

I simulation extrapolation
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Imposing invariants on DP mechanisms

Invariants are exact statistics computed from the confidential micro-data

(Ashmead et al., 2019), with which the DP releases should be congruent.

Two ways to impose a set of invariants C onto a given DP mechanism S:

1. Co-processing:

SC (x)
d
= S (x) | S (x) ∈ C.

2. Post-processing:

S̃C (x) = argmina∈C∆ (S (x) , a) ,

for ∆ some discrepancy measure (L2, L1, etc.)
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Co-processing guarantee: a result

Let S be an ε-DP mechanism based on the confidential query s : X → Rp
.

C ∈ B (Rp) is a set of invariants, and SC a modified privatization

mechanism such that

SC
d
= S | S ∈ C.

Then for all k-neighboring and C-conforming pairs of datasets

{(x, x ′) : d (x, x ′) = k, s (x) ∈ C, s (x ′) ∈ C}, and all A ∈ B (Rp),

P (SC (x) ∈ A) ≤ exp (2kε) P (SC (x ′) ∈ A) .

Caution: Due to the constraint C imposes on X , neighboring dataset pairs

with k = 1 (original DP definition) may no longer be feasible.

Proof: P (SC (x) ∈ A)

P (SC (x ′) ∈ A)
=

P (S (x) ∈ A ∩ C)

P (S (x ′) ∈ A ∩ C)︸ ︷︷ ︸
≤exp(kε)

· P (S (x ′) ∈ C)

P (S (x) ∈ C)︸ ︷︷ ︸
≤exp(kε)

≤ exp (2kε) .
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Co-processing vs. Post-processing

Suppose the confidential dataset has just two count entries: x = (x1, x2).

The DP mechanism S (x) = (s1, s2) = (x1 + u1, x2 + u2), ui ∼ Lap (ε−1).

The invariant information is the total count x1 + x2 = n.

1. Co-processing:

SC (x)
d
= (x1 + u1, x2 + u2) | u1 + u2 = 0.

The density of SC is

p (SC (x) = (s, n− s)) = ε exp {−2ε |s − x1|} .

That is, simulate s1 ∼ x1 + Lap
(

(2ε)−1

)
and set s2 = n− s1, or

equivalently, simulate s2 ∼ x2 + Lap
(

(2ε)−1

)
and set s1 = n− s2.
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Co-processing vs. Post-processing

Suppose the confidential dataset has just two count entries: x = (x1, x2).

The DP mechanism S (x) = (s1, s2) = (x1 + u1, x2 + u2), ui ∼ Lap (ε−1).

The invariant information is the total count x1 + x2 = n.

2. Post-processing (L2):

S̃L2

C (x) = argmina∈C ‖S (x)− a‖
2

d
= (x̄ + ũ, x̄ − ũ) ,

where ũ is a 50%-50% mixture of:

I a Laplace distribution with scale (2ε)−1

, and

I a signed Gamma distribution (i.e. a regular Gamma distribution times

a fair random sign) with shape k = 2 and scale (2ε)−1

.
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Co-processing vs. Post-processing

Suppose the confidential dataset has just two count entries: x = (x1, x2).

The DP mechanism S (x) = (s1, s2) = (x1 + u1, x2 + u2), ui ∼ Lap (ε−1).

The invariant information is the total count x1 + x2 = n.

3. Post-processing (L1):

S̃L1

C (x) = argmina∈C ‖S (x)− a‖
1

= (s̃, n− s̃)

is not a unique mechanism, only having to satisfy

s̃ ∈ [x1 + min (u1, u2) , x1 + max (u1, u2)] .

In particular, s̃ = x1 + u1 is always a solution, i.e. simply add Lap (ε−1)

noise to the first entry, and subtract the same amount from the second.

�estion: privacy guarantees for post-processing?
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